
Assimilating subsurface hydrology data
Michail D. Vrettas and Inez Fung

University of California, Berkeley. Department of Earth & Planetary Science.

Introduction

The vertical distribution of subsurface moisture and its accessibility for
evapotranspiration is a key determinant of the fate of ecosystems and their
feedback on the climate system.

I Motivation: The hydrologically
active soil column in CLM4 [1], has
a globally uniform thickness of 3.8m.
This unrealistic critical assumption
is a deficiency of the model and
requires further attention in the
future development of the model.

I Goal: Ultimately, we are interested
in developing algorithms to model
deep subsurface water dynamics
along with its interaction with deep
root systems.

Figure : (1) Schematic representation of the
proposed vertical structure. The heterogeneous
subsurface is divided into three layers (soil,
saprolite and weathered bedrock), with varying
depths.

Richards’ Equation

Richards’ PDE describes the movement of liquids in unsaturated porous
media [2]. It appears mainly in two forms:

I θ-based:
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I ψ-based:
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where the description of the variables is as follows:

Name Description Dimensions

θ(z, t) soil moisture (water content) [L3/L3]
ψ(z, t) pressure head (suction) [L]

z vertical space dimension [L]
t time dimension [T]

c(ψ) ≡ dθ
dψ

specific moisture capacity [1/L]

D(θ) ≡ K(θ)/C(θ) unsaturated diffusivity [L2/T]
K(θ) unsaturated hydraulic conductivity [L/T]
s(z, t) source/sink term [1/T]

I Boundary Conditions: For the experiments that follow, we applied zero flux
conditions both at the top (z = 0) and at the bottom (z = ztot) of the

equation, i.e. : K(ψ)

(
∂ψ
∂z
− 1

)
= 0

I Main parameter of interest here is the hydraulic conductivity K(θ),
which varies with the volumetric water content θ [3].

Datasets: Berkeley HydroWatch Project

I Located on a small (4000 m
2) steep (35o) hill-slope nicknamed ’Rivendell’

in the Angelo Coast Range Reserve in the Eel River Watershed, in Northern
California, the Berkeley HydroWatch Project has drilled 12 wells and uses
more than 800 sensors to record the hydrologic status in real time.

I High frequency (less than 30 minutes) data, for nearly five years, shows
that the water tables, roughly 18 meters below the surface, can respond in
less than 8 hours to the first rains, suggesting very fast flow through
macro-pores and fractured rock (e.g. Figure 1).

Data assimilation methodology - EnKF/S

I To assimilate the water table data obtained from the Berkeley HydroWatch
Project, with the model equations (Richards’ PDE) we use an ensemble
Kalman filter [4].

I To reduce the sampling error caused by remote locations in the state vector
we propose to use a Gaussian correlation function with local support, (e.g.

ρ(i, j;λ) = exp{−(i−j)2

λ2 }).
I For estimating the desired parameters of the model we will use a RTS

ensemble Kalman smoother [5].

Experiments with artifical data

To demonstrate this approach, we apply the algorithm on synthetic data.
Numerical solution of the original PDE (ψ-based), with zero flux boundary
conditions, produces the ”truth”, which provides the water table depth
observations every 30 min. The following table summarizes the setting:

Name : Ztot ∆z Ttot ∆t θr θs Ksat Nens

Value : 500 cm 1 cm 240 hr 30 min 0.1 0.5 20 cm/hr 60

The soil-water content θ as a function of the pressure head ψ, and the
hydraulic conductivity K as a function of θ are given by [3]:

θ(ψ) = θr +
θs − θr

[1 + (α|ψ|)n]m
, (3)

K(Θ) = Ksat

√
Θ[1− (1−Θ1/m)m]2 ,with Θ =

θ − θr
θs − θr

, (4)

where α = 0.0335 and m = 1− 1/n, with n = 2.

Results (preliminary)
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Soil Moisture: θ(z,t)
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(b)θ(z, t)
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Hydraulic Conductivity: K(z,t)
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(c) K(z, t)
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(d) wtd. estimation vs (noisy) observations

Figure : 2(a) shows the pressure head ψ, as a function of depth z and time t. Figures 2(b) and
2(c) the same but for soil-moisture θ and the hydraulic conductivity K respectively. On all
plots the wtd (black solid line) is superimposed for contrast with the estimated values. 2(d)
shows the mean wtd value (solid red line), surrounded by two times std (grey shaded area), as
a function of time. Again the black solid line indicates the true values of the wtd.

Future work

This work is ongoing and there are several directions in which we are
looking to move forward:

1. Currently the hydraulic conductivity K(θ) is given by a fixed formula, see
Eq.(5). However, to capture the effect of fractures in the weather bedrock
layer we will include a random term (which we will attempt to estimate).

2. To complete the model we need to add a lateral conductivity term such as
KLat(z) = αL × K(z), i.e. provide the water the means to escape from the
1-D model and account for the slow decline of the water table depth.
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