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Thesis Summary

This thesis is concerned with approximate inference in dynamical systems, from a variational
Bayesian perspective. When modelling real world dynamical systems, stochastic differential equa-
tions appear as a natural choice, mainly because of their ability to model the noise of the system
by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference
in such processes has drawn much attention. Here two new extended frameworks are derived and
presented that are based on basis function expansions and local polynomial approximations of a
recently proposed variational Bayesian algorithm. It is shown that the newextensions converge
to the original variational algorithm and can be used for state estimation (smoothing). However,
the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and
diffusion coefficients). The new methods are numerically validated on a range of different sys-
tems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process,
for which the exact likelihood can be computed analytically, the univariate and highly non-linear,
stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3-dimensional model).
The algorithms are also applied to the 40 dimensional stochastic Lorenz ’96 system. In this inves-
tigation these new approaches are compared with a variety of other well known methods such as
the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman
filter (for jointly estimating the systems states and model parameters) and full weak-constraint
4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or
length of time window increases is provided.

Keywords: Bayesian inference, variational techniques, dynamical systems, stochastic
differential equations, parameter estimation
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Glossary & Mathematical Notation

The need for a unified notation in the field of data assimilation has been well established (Ide et al.,
1997). In order to assist the reader with the mathematical notation and glossary, used throughout
this thesis, the following tables summarize the most commonly found symbols and expressions.
Each term will be defined properly, when first appeared and further definitions and clarifications
will be provided when necessary. As a general rule bold fonts are used for vectors or matrices,
while normal fonts for scalars. Lower-case Latin letters will denote scalars or vectors, whilst
upper-case matrices. Greek letters will denote model parameters.

For better presentation the notation has been organised in tables. First aregiven some com-
monly found mathematical symbols.

Mathematical symbols and expressions Description

∼ is distributed as
∝ is proportional to
≈ approximately equal
∂a partial derivative with respect to scalara
∇a gradient with respect to vectora
ln natural logarithm

O(n) of ordern
pdf probability density function

w.r.t. with respect to

Next are considered the sets of numbers. In this thesis the most frequently used set is the
one of real numbers. However, the set of natural numbers is used when indexing the elements of
vectors or matrices, with the asterisk symbol (∗) denoting exclusion of the zero number.

Sets Description

ℜ set of real numbers
N(∗) set of natural numbers (* excluding zero)
ℜD D-dimensional set of real numbers

To avoid confusion the vectors are considered column-wise unless transposed. When a vector
has no index is assumed to be a (continuous) random variable. The most common index is ’t ’ and
denotes (continuous) time dependence (e.g. the state vectorxt). For discrete time dependence the
index ’k’ is more favourable.

Vectors Description

x ∈ℜD real valued column vector
xi ∈ℜ i’th element of the vectorx

xt ∈ℜD (continuous) time dependent state vector
xk ∈ℜD (discrete) time dependent state vector, i.e.xk = xt=tk

yk ∈ℜD (discrete) time dependent observation vector
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GLOSSARY & MATHEMATICAL NOTATION

Matrices follow as a natural extension of vectors. Only upper-case letters are used and unless
otherwise stated they are considered square (D×D), where ’D’ is the number of rows /columns.
If every element of a matrix is time dependent, then for notational convenience this dependency
will be denoted as subscript on the whole matrix rather than on each individual element (see
Appendix D).

Matrices Description

K ∈ℜD×D real valued matrix
Krc ∈ℜ r ’th row c’th column scalar element ofK

K⊤ transposed matrix
K−1 inverted matrix

tr{K} trace of matrix
∣K ∣ determinant of matrix

diag(K) diagonal elements of matrixK
I ∈ℜD×D Identity matrix

To identify a specific class of distribution, calligraphic capital letters are used, such asN ormal
or Gamma distribution. The terms ’distribution’ and ’density’ are used interchangeably and the
letter ’p’ is used for a general type of distribution, with the type of it (e.g. prior, posterior or
likelihood) given individually, at each occurrence. Although an abuseof mathematical notation,
this approach is more compact and commonly used.

Distributions Description

N (µ,Λ) Normal (Gaussian) distribution
G(α,β) Gamma distribution

G−1(a,b) Inverse Gamma distribution
p(x) true marginal distribution
q(x) approximate marginal distribution

p(y∣x) conditional distribution ofy givenx
p(y,x) joint distribution ofy andx
p(x0:N) shorthand notation ofp(x0,x1, . . . ,xN)

Some special notation that is used to describe the variational framework in Chapter (4) is given
in the following table. Proper definitions of the vectors, matrices and functions are also given in
the same section.

Special notation Description

f(xt) ∈ℜD drift function
gL(xt) ∈ℜD (linear) approximation function
� ∈ℜD drift parameter vector
wt ∈ℜD Wiener process
Σ ∈ℜD×D system noise covariance matrix
R ∈ℜD×D measurement error covariance matrix
H ∈ℜD×D (linear) observation operator
E{x}q(x) expectation ofx w.r.t. q(x)
⟨x⟩q shorthand notation ofE{x}q(x)
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Chapter 1 INTRODUCTION

“ I cannot believe that God plays dice with the cosmos.”
— Albert Einstein, German physicist.

“Consideration of black holes suggests, not only that God does play dice,but
that he sometimes confuses us by throwing them where they can’t be seen.”

— Stephen W. Hawking, British physicist.

1.1 How random are phenomena?

One of the main characteristics that distinguish the human species from the rest of the species on

this planet is its intrinsic curiosity to better understand the world that surrounds them. Unlike the

other animals, humans are not content to satisfy only their basic needs and instincts, like thirst,

hunger, self-preservation, breeding, etc. What is more interesting, is the human ability to create

questions that themselves, cannot answer.

In the early beginnings of civilisation, humans were faced with a lot of queries concerning

mostly the natural phenomena. The answer, at that time, was simple; for everything was respon-

sible a “God”. A God was raising the sun every morning and took it back in thenight, another

God was responsible for bringing rain, someone else was the one “punishing” humans with natu-

ral disasters, when they were misbehaving and so on1. However, the advanced ability of humans

(compared to the other animals) to observe and draw conclusions helped in finding patterns and

creating physical “laws” that describe the observed phenomena. Ultimatelythe goal of science is

to understand how things work and if possible to make predictions about them(Orrell, 2007).

Pierre Simon Laplace, the famous French mathematician and physicist, laid the foundations of

deterministic science. He believed that there exists a set of well defined equations that predict ev-

erything in the universe (even human behaviour) given an accurate initial condition of the system;

i.e. if it was possible to specify the exact position and momentum of every particle, at a single

time instant, then the evolution of the universe could be uniquely determined.

The scientific belief that the whole cosmos is completely and uniquely determined by a set of

equations that describe everything was very strong, until the beginning of the 20’th century, when

the work of two German physicists, Max Planck with thequantum principle(early 1900) and

Werner Heisenberg with theuncertainty principle(1926), laid the foundations of what is known

today asQuantum Theoryor Quantum Mechanics. The uncertainty principle, roughly states that

the more accurately the position of a particle is measured, the greater the uncertainty in its mo-

mentum and vice versa. Therefore, even if Laplace’s belief was right and a single mathematical

equation, given an infinitesimally accurate initial condition can predict everything, then theuncer-

tainty principle, if accepted, makes sure that this cannot happen because we would never be able

1Some people still have the same beliefs about the world that surrounds ustoday.
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to measure the initial conditions infinitesimally accurate. Therefore, nature itself limits human

curiosity to perform predictions.

Even though quantum mechanics imply that matter is by definition indeterministic and can

be described only in a probabilistic way, someone can argue that what appears random to us is

because we are still unable to understand the underlying dynamics that pushes the electron from

one quantum state to the other. Albert Einstein, one of the most recognized scientists of the

past century, contributed a lot to the development of quantum theory (in fact he was awarded a

Nobel prize), but was a deeply religious person and refused to accept that randomness exists in the

universe and believed, until the very end of his life, that the universe operates under completeLaw

and Order.

Nevertheless, there is room for both scientific beliefs (deterministic and random) to co-exist.

Even though quantum phenomena are mostly observed in microscopic level when averaging over

a huge number of particles, phenomena can still be adequately described by deterministic laws.

After all, following Ockhams’ Razor: “a theory should be no more complicatedthan necessary”.

1.2 From ODEs to SDEs

Consider a system whose macroscopic behaviour (i.e. state of the systemxt) can be described by

an ordinary differential equation (ODE) such as:

dxt = f (xt)dt . (1.1)

This describes, roughly, that the change in the state of the system (xt), during the time interval

dt is proportional to that time incrementdt, with a coupling coefficientf (xt) that depends on the

state of the system at each time1. In the deterministic case, given an initial state of the systemx0

there will be a unique solution of Equation (1.1). Another way to see Equation(1.1) is in a form

of an integral equation. That is:

xt = x0+
∫ t

0
f (xs)ds. (1.2)

In reality, however, systems most often incorporate unknown forces, or known but very com-

plex to be represented, that influence their macroscopic behaviour (Honerkamp, 1993). Often the

termnoise, is used to describe these unknown components that cause the system to fluctuate. To

capture these fluctuations a random (stochastic) term is introduced to the previous model (Equation

1.1). Hence, the evolution of the system can be better described by an equation of the following

form:

dxt = f (xt)dt+σ(xt)dzt , (1.3)

1To ease the notation, this section considers only univariate examples.
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where f (xt) is the drift function characterising the local trend,σ(xt) is the diffusion function,

which influences the average size of fluctuations ofxt , andzt is thenoise processwhich often

models the effect of faster dynamical modes not explicitly represented in thedrift function but

present in the real system.

The corresponding integral equation is:

xt = x0+
∫ t

0
f (xs)ds+

∫ t

0
σ(xs)dzs (1.4)

The question that now arises is,since there is no knowledge about the noise term zt and its

effect on the evolution of the system (i.e.σ(xt)dzt), how can this equation be solved and determine

the evolution of the system?

The classical theory of stochastic differential equations is based on the assumption ofGaussian

white noise(Penland, 2003) and its“parent” , theWiener process. As described in Chapter 2, the

Wiener process is “almost everywhere” non-differentiable. Therefore, strictly mathematically, it

is not permissible to write down the following expression:dwt
dt . However, in a more loose sense

it is assumed that this time derivative exists (in a general way) and that is equal to the Gaussian

white noise. Hence:
dwt

dt
= ξt ⇒ dwt = ξtdt , (1.5)

whereξt ∈ ℜ is the time dependent Gaussian white noise. Therefore, by substituting the noise

processzt with a Wiener processwt and the above result (Eq. 1.5) into Equation (1.3), yields:

dxt = f (xt)dt+σ(xt)dwt (1.6)

= f (xt)dt+σ(xt)ξtdt , (1.7)

which is assumed here to provide a general expression for a stochastic differential equation (SDE).

Example

To give an example of the above discussion a simple univariate system is considered, with dynam-

ics described by the following ODE (Eq. 1.8). This system is driven by a force f (xt) = θsin(xt),

and an example simulation (trajectory), on a five time unit interval,T = [0,5], is shown in Figure

1.1 (left panel, dashed black line). The corresponding SDE is given byEquation (1.9), and a real-

isation with an additive noise process (i.e.σ is independent of the statext), is illustrated in Figure

1.1 (left panel, solid blue line).

dxt

dt
= θsin(xt) and (1.8)

dxt

dt
= θsin(xt)+σ

dwt

dt
(1.9)
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In practice, however, the continuous time equations are transformed to theirdiscrete time coun-

terparts, as shown in Equations (1.10) and (1.11) respectively. Here asimple Euler scheme was

chosen for the discretisation of both ODE and SDE (Kloeden and Platen, 1999), which imposed a

relatively small time stepδt ≡ δtk+1−δtk = 0.001. For this example the drift parameter was set to

θ = 4 and the system noise toσ = 1.

δxk = θsin(xk) δt and (1.10)

δxk = θsin(xk) δt +σ
√

δt εk , (1.11)

whereδxk = xk+1−xk andεk ∼N (0,1).
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Figure 1.1:Left panel: An example of an ordinary differential equation (dashed black line) versus
the corresponding stochastic differential equation (solid blue line), simulated on a five time units
interval (i.e.T = [0,5]). Both trajectories share the same initial state condition (x0) and have the
same setting for the drift parameterθ = 4. The effect of the added random process (wt) is obvious
even from early times in the simulating window.Right panel: shows only the first time unit of
the simulation, to emphasise how fast the SDE deviates from the ODE even though they start from
the exact same point.

Figure 1.1 shows that the solution for the ODE (dashed black line), is smooth and given a

fixed initial conditionx0, is unique. On the contrary, the solution for the SDE (solid blue line) is

very rough and even though both solutions start with the same initial conditions, it deviates from

the deterministic evolution in a random way. Moreover, every time that the SDE issolved the

trajectory is different, as a result of the influence of the random noise processwt .
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1.3 Bayesian inference

As implied earlier in Section 1.1, phenomena that appear to evolve in a random manner can be

described in a probabilistic way. Shafer (1992), argues that probabilitycan mean many things.

The two most prevalent approaches, of probability theory, are thefrequentistand theBayesian

interpretations. Roughly speaking, the frequentist approach interpretsKolmogorov’s Axioms for

probability, as frequencies. That means the probability of an event is the long-run frequency with

which the event occurs with a specific experimental setup. Figure 1.2, shows an example of the

probability of appearing “Heads” (blue ’x’ symbol) or “Tails” (red circles), when tossing a fair

coin. When the number of experimental trials (coin tosses) increases the probabilities of both

events tend to 1/2 (horizontal dashed line), as expected for a “fair” coin.

However, the frequentist approach to probabilities requests not only for an event to have hap-

pened, but also to repeat many times (infinite in theory), in order to apply a probability on that

event. On the contrary, the Bayesian approach interprets the axioms as degrees of belief (i.e.

probabilities can be assigned to quantify beliefs on events that have not yet happened). It is not

the intention here to get involved into philosophical discussions on which probabilistic interpre-

tation is correct. Within this thesis the Bayesian approach is adopted and the methods described

later are developed in a Bayesian inference framework. The main reasonis because within the

Bayesian paradigm uncertainty, in making inference, is quantified directly by probabilities based

on statistical data analysis, therefore it provides a more principled framework for its treatment.
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Figure 1.2: Frequency of a “fair” coin, after 50,000 tosses. As the number of trials increases the
frequency that the heads (blue ’x’ marks) and tails (red circles) appear tends to the true probability
of 1/2 (horizontal dashed line).

In a Bayesian inference framework (Gelman et al., 1995), everything is expressed with prob-

ability distributions. First the problem must be formulated with a “full probability model”, which

is basically the joint probability density of all the quantities of interest (observed and unobserved).

Then, after the prior beliefs have been quantified, in terms of prior probability density functions

18



Chapter 1 INTRODUCTION

(pdfs), inference can be characterised as estimating the conditional density of the quantities of

interest, given the available observations. In practice, this can be achieved using Bayes’ rule1:

p(x∣y) = p(y∣x)p(x)
p(y)

, with 0< p(y)< ∞ , (1.12)

∝ p(y∣x)p(x) . (1.13)

In Equation (1.13),p(x) is theprior density function, which incorporates all prior beliefs about

the quantityx before seeing any data,p(y∣x) is thelikelihood of the observed valuesy given the

current estimates ofx, p(y) is themarginal likelihood(or evidence) which must be bounded and

p(x∣y) is theposteriordensity of the quantities of primary interest conditional on the available

observations.

Bayesian inference is very popular in the areas of data assimilation (Wikle and Berliner, 2007)

and machine learning (Tipping, 2006), mainly because it provides a natural way to update the

current estimates in the light of new observations, by iterating the Bayes rule, Eq. (1.13).

1.4 Thesis outline

Chapter 1 begins with a general discussion about the source of stochasticity (or randomness)

found in real world systems and provides a small discussion, including a simpleexample, on the

difference between a deterministic system described by an ODE and a stochastic system defined

by an SDE. The viewpoint on why the Bayesian paradigm is appropriate if one wants to make

inference about dynamical systems is also highlighted.

Chapter 2 gives some necessary theoretical definitions of stochastic processes,including some

properties, to make the rest of the thesis more self-contained. The emphasisis on theMarkov

processesand some characteristic examples are illustrated. Diffusion processes follow and the

notion of discrete time observation is clarified. The problem of optimal estimation of the system

state and model parameters, given a discrete set of noisy observations isdefined. Although an

exhaustive review of the methodologies that deal with this problem cannot be claimed an effort is

made to collect and present the basic methods on this subject.

Chapter 3 summarizes and briefly reviews the dynamical models that are used in the follow-

ing chapters to validate the new approximation algorithms that developed. The univariate linear

Ornstein- Uhlenbeck process (OU) is introduced and the non-linear Double-Well (DW) follows.

1Named after the English mathematician Thomas Bayes (1702 - 1761). Bayes theorem as described in his work,

“An Essay towards solving a Problem in the Doctrine of Chances”, was published after his death at the ‘Philosophical

Transactions of the Royal Society of London (1763).
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To test how the methods developed scale to multivariate systems a stochastic version of the three

dimensional chaotic Lorenz ’63 system (L3D) is implemented. The last systemconsidered is the

forty dimensional stochastic Lorenz ’96 (L40D).

Chapter 4 reviews in detail the variational Gaussian process approximation (VGPA) algorithm,

for partially observed diffusions that was first introduced in Archambeau et al. (2007). This is

essential because the VGPA algorithm provides the backbone of both extensions that will follow

in the next chapters. The state estimation (smoothing) framework is examined first, with two

approaches to estimating the model (hyper) parameters following.

Chapter 5 presents an extension of the aforementioned VGPA algorithm in terms of basisfunc-

tion expansions defined globally over the whole time domain of the inference window. Initially,

the main characteristics and benefits of using RBFs are highlighted and then the general multivari-

ate framework is derived. Numerical simulations test its convergence properties comparing to the

original VGPA algorithm and results of estimating (hyper-) parameters are also included.

Chapter 6 provides an alternative re-parametrisation of the original VGPA framework by using

polynomial approximation defined locally between each pair of observations. This approach al-

though similar to the one of the basis function expansions, as presented in Chapter 5, gives a more

appropriate approximation framework with beneficial characteristics.

Chapter 7 compares the previously derived extensions with a variety of well known methods of

state and parameter estimation. The algorithms are briefly described and the comparison results

are presented separately for state and parameter estimation. The asymptotic properties of the local

polynomial approximation (as defined in Chapter 6), as the number of observations or length of

time window increases, is empirically thoroughly analysed.

Chapter 8 summarizes the work and provides possible future research directions.

1.5 Disclaimer

This thesis is submitted for the degree of Doctor of Philosophy (Ph.D). The work presented here

is original and has not been submitted previously for a degree, diploma or qualification at another

university. However, parts of the work have been published and presented in the following papers,

conferences and seminars (in chronological order):
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∙ Appendix A, which contains the full derivations of the original VGPA framework, has been

submitted as a Non-linearity and Complexity Research Group (NCRG) technical report in

Vrettas et al. (2008).

∙ Early theoretical work on both extensions, as described in Chapters 5 and 6, has been ac-

cepted and presented at the Bayesian Inference for Stochastic Processes (BISP) workshop,

June, 2009.

∙ The complete theoretical framework (for the univariate case) of the basisfunction expan-

sion (Chapter 5), along with some preliminary results on the univariate DW system have

been presented at the European Symposium on Artificial Neural Networks (ESANN) and

published in the conference proceedings (Vrettas et al., 2009). In addition, an extended

version of the paper containing the full multivariate RBF framework and results on higher-

dimensional systems has been published in Neurocomputing (Vrettas et al., 2010b).

∙ Comparison results, mainly on state estimation, of the VGPA algorithm with methods im-

plemented in Chapter 7, have been presented at the European Geosciences Union (EGU)

conference, April 2010.

∙ The local polynomial extension along with many results included in Chapters 6 and 7, have

been submitted as a journal paper to Physica D (Vrettas et al., 2010a).

∙ Finally, many views and approaches presented here have been discussed in the Non-linearity

and Complexity Research Group (NCRG, Aston University) seminars, on several occasions.
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Chapter 2 PROBLEM STATEMENT AND EXISTING METHODOLOGIES

“Probable is what usually happens.”
— Aristotle, Greek philosopher.

2.1 Foreword

Chapter 2 introduces the reader to the problem this thesis addresses, as well as the main categories

of methodologies that have been developed to solve it. In order to do that it isnecessary to first

give a review of the main mathematical elements that are used later to built the machinery of the

approximation methods that developed. A basic level of probability theory is assumed (e.g. events,

sample spaces, probabilities, etc.). Instead of rigorous definitions, intuitive ways of presenting the

essential building blocks are preferred. A more detailed presentation on the subject of probability

theory and stochastic processes is given by Papoulis (1984).

2.1.1 Chapter outline

The chapter is organised as follows. Initially a definition of a stochastic process is given, includ-

ing some useful properties. Emphasis is on so-calledMarkov processesand some characteristic

examples such as the Gaussian and the Wiener processes are illustrated. The important class of

diffusion processes follows and the notion of discrete time observation is clarified. After the basic

elements are introduced, the inference problem (from a Bayesian perspective) that provides the

focus of this work is properly defined. A review of the methods that address inference in partially

observed diffusion processes is given. The chapter concludes with adiscussion.

2.2 Stochastic processes

Stochastic processes (also known as random processes) arise naturally in range of different con-

texts from financial modelling (e.g. the stock market, exchange rate fluctuations), biological mod-

elling (e.g. a patient’s EEG) to environmental modelling (e.g. the temperature at apoint). It can be

seen intuitively as a physical phenomenon which evolves in time in a random or, in a loose sense,

probabilistic way. In this section a definition of a stochastic process will be given, highlighting

some important properties as well as providing an intuitive view, based on some characteristic

examples. It is not the intention to reproduce all the theory around stochastic processes (which

would require proper It̄o calculus). Instead it only provides the basic definitions and properties that

are necessary for the rest of the thesis. An informal and short introduction to stochastic processes

can be found in Miller (2007). For a more complete and detailed study of the subject there are

excellent textbooks such as Honerkamp (1993); Gardiner (2003), and Kloeden and Platen (1999),

where all the concepts are provided in a formal mathematical manner.
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Definition 2.2.1 A stochastic process is a collection of random variables,(xt), indexed by a set,

which here is interpreted as time. Hence if T⊂ℜ, is the time set under consideration and(Ω,A,P)

a common probability space, then{xt}t∈T is a stochastic process.

Thus, it can be seen as a function of two variablesT×Ω→ℜ such that:

∙ x(t, ⋅) : Ω→ℜ is a random variable∀ t ∈ T.

∙ x(⋅,ω) : T→ℜ is a realization∀ ω ∈Ω.

If T is a countable set (discrete case) the stochastic process is calleddiscrete in time, otherwise if

T is an interval (continuous case) the stochastic process is known ascontinuous in time.

Some important properties, that can characterise whole classes of stochastic processes are:

Property 2.2.1 Given a partition of time, T= {t1 < t2 < ⋅ ⋅ ⋅< tn} and a positive quantity d> 0,

a stochastic process isstrictly stationary if, ∀ t ∈ T the joint distributions(xt1,xt2, . . . ,xtn) and

(xt1+d,xt2+d, . . . ,xtn+d) are identically distributed. That is, time displacements leave the joint dis-

tributions unchanged.

Property 2.2.2 Given a partition of time, T= {t1 < t2 < ⋅ ⋅ ⋅< tn}, a stochastic process is said to

haveindependent increments if, ∀ t ∈ T the random variables (xt j+1−xt j ), with j= 1,2, . . . ,n−1

are independent for any finite combination of time instants.

Property 2.2.3 If, for any t > s and d> 0, the distribution of (xt+d− xs+d) is the same as the

distribution of (xt −xs), then the process is said to havestationary independent increments.

Property 2.2.4 A stochastic process in which if one wants to make a prediction about the stateof

the system, at a future time ‘tn+1’, the only information necessary is the state of the system at the

present time ‘tn’, is called aMarkov process.

Any knowledge about the past (of a Markov process) is redundant. More accurately this is

called a “first order” Markov process. This can be generalised to “m’th order” by allowing the

process to “remember” them−1 past states. However for the rest of this thesis emphasis is only

on “first order” Markov processes unless stated otherwise.

2.2.1 Examples

Gaussian Processes

One of the most well known classes of stochastic processes is the Gaussian process. Here the

index set is (often) not considered as the time. A thorough treatment of Gaussian processes can be
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found in Rasmussen and Williams (2006). Here the formal definition as givenin Rasmussen and

Williams (2006, Ch.2) is adopted.

Definition 2.2.2 “A Gaussian process is a collection of random variables, any finite number of

which have a joint Gaussian distribution.”

The Gaussian process can be fully characterised by its first two moments. For a multivariate

process that is:

∙ means :�t = ⟨xt⟩, ∀ t ∈ T.

∙ variances :�2
t =

〈
(xt −�t)(xt−�t)

⊤〉, ∀ t ∈ T.

∙ (two-point) covariances :cov(s, t) =
〈
(xs−�s)(xt−�t)

⊤〉, ∀ t,s∈ T with t ∕= s.

Wiener Process

A well studied Gaussian process is theWiener process1. It is a continuous-time stochastic process

which was proposed to describe the arbitrary movement of a particle pollen on the surface of water,

due to the continuous collisions with many water molecules, and is also known asBrownian motion

or acontinuous random walk.

Definition 2.2.3 A Wiener process is a continuous-time Gaussian process that satisfies theMarkov

property, with independent increments for which:

∙ w0 = 0 , with probability 1

∙ ⟨wt⟩ = 0

∙ wt −ws∼N (0, t−s)

∙
〈
wt ⋅w⊤s

〉
= I ⋅min(t,s)

∙
〈
dwt ⋅dw⊤s

〉
= dt ⋅ I ⋅δ(t−s) , ∀ (0≤ s≤ t) ∈ T.

Figure 2.1(a) shows four sample paths, or trajectories, from the standard univariate Wiener

process. Notice that although a Wiener sample path is a continuous function of time almost surely,

it is not differentiable with probability one; this is called arough process.

1Named after the American mathematician Norbert Wiener 1894 - 1964.

25



Chapter 2 PROBLEM STATEMENT AND EXISTING METHODOLOGIES

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

t

w(t)

(a) 1D Wiener process

−3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

w
x
(t)

w
y(t

)

(b) 2D Wiener process

Figure 2.1: (a) Four different standard Wiener paths are simulated, each one presented with dif-
ferent colour. (b) An illustration of a two dimensional Wiener process. Note that all sample paths
start atw0 = 0.

2.3 Partially observed diffusions

Diffusion processes are a special class of continuous time Markov processes with continuous sam-

ple paths, (Kloeden and Platen, 1999). The time evolution of a general,D dimensional, diffusion

process{xt}t∈T can be described by a stochastic differential equation (here to be interpreted in the

Itō sense):

dxt = f(t,xt ;�) dt+Σ(t,xt ;�)
1/2 dwt , dwt ∼N (0,dtI) (2.1)

wherext ∈ℜD is theD dimensional latent state vector,f(t,xt ;�)∈ℜD is the (typically) non-linear

drift function, that models the deterministic part of the system,Σ(t,xt ;�) ∈ℜD×D is the diffusion

or system noise covariance matrix anddwt is the differential of aD dimensional Wiener process,

{wt}t∈T , which often models the effect of faster dynamical modes not explicitly represented in the

drift function but present in the real system.T = [t0, t f ] is a fixed time window of inference, with

t0 andt f denoting the initial and final times respectively. The vector� ∈ℜm is a set of parameters

within the drift and diffusion functions.

Necessary conditions

To be a diffusion process the following limits must exist for all 0≤ s< t, with δ > 0 (Kloeden and

Platen, 1999):

lim
t→s

[

(t−s)−1
∫
∣z−x∣>δ

p(s,x; t,z)dz
]

= 0 (2.2)

lim
t→s

[

(t−s)−1
∫
∣z−x∣≤δ

(z−x)p(s,x; t,z)dz
]

= f (s,x) (2.3)

lim
t→s

[

(t−s)−1
∫
∣z−x∣≤δ

(z−x)(z−x)⊤p(s,x; t,z)dz
]

=Σ(s,x) (2.4)

wherex, z ∈ ℜD, p(s,x; t,z) is the transition pdf and the dependence of the drift and diffusion

functions on the parameters� has been omitted for notational brevity. The first limit Eq. (2.2)
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prevents the process from having large displacements over a small time interval. Conditions (2.3)

and (2.4) are the instantaneous rate of change in the mean (drift function)and covariance (diffusion

coefficient), given that the process was at statex at times (i.e. x(s)≡ xs = x).

Discrete observations

Often the latent process is only partially observed, at a small number of ordered discrete times

{tk}Kk=1, which satisfy :t0 < t1 < t2 < ⋅ ⋅ ⋅ < tK < t f . In addition the observations are subject to

error. Hence

yk = h(xtk)+�k , �k ∼N (0,R) (2.5)

whereyk ∈ℜd denotes thek’th observation taken at timetk, h(⋅) : ℜD→ℜd is the general obser-

vation operator and the observation noise�k ∈ ℜd, is assumed (for simplicity) to be independent

and identically distributed (i.i.d.) Gaussian white, with covariance matrixR ∈ℜd×d. Note that if

the nature of the observations varies at different times thenhk(⋅) is used instead.

2.4 Problem definition

This thesis addresses the problem of inferring the states of a system (xt), together with the (pos-

sibly) unknown model parameters (�), from systems that are modelled by diffusion processes and

observed at a finite set of discrete time points.

This is an interesting and challenging task because diffusion models have been used exten-

sively in the last few decades to model phenomena that exhibit randomnessand evolve continu-

ously in time. Meanwhile, observations from most physical systems arrive at discrete times (e.g.

hourly, daily, monthly, etc.).

More precisely, one is dealing with a continuous time system, which is observedat discrete

times; and that is what makes the problem difficult. In all but a few examples1, estimation of dif-

fusion models is not straightforward because the SDE that describes the temporal evolution of the

system cannot be solved analytically. Moreover, most real world processes are complex, which

implies a non-linear driftf(xt) and diffusion function is necessary, if good agreement with the

measurable values is to be achieved. This complicates the statistical analysis even more because

the (discrete-time) transition densities Eq. (2.2) are no longer tractable, which means that estima-

tion of the model parameters within a traditional Maximum-Likelihood (ML) framework is not

possible. Therefore, approximate techniques are sought.

1(a) Geometric Brownian motion,(b) Ornstein-Uhlenbeck process and(c) Cox-Ingressol-Ross process, have log-

normal, normal and non-centred chi- squared transition densities respectively.
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In a Bayesian framework, the goal is: given a system whose evolution is described by a dif-

fusion (such as Equation 2.1) and a set of discrete time observations (Equation 2.5) to estimate

the (smoothing) posterior distribution,ps(xt ∣y1:K), conditioned on the available observations. The

system states might be summarised as the meanmt = ⟨xt⟩ps
, together with a measure of its uncer-

tainty St =
〈
(xt −mt)(xt−mt)

⊤〉
ps

. In addition, when the model parameters� are unknown, an

estimate of their value is also desirable.

2.5 Existing methodologies

After describing the main inference problem addressed in this thesis, the current section reviews

and discusses the main methodologies that have been employed to solve it. Inference for non-

linear stochastic dynamical systems, which are observed at a finite set of discrete time instants,

is a challenging task because themissing pathsbetween observed values must also be estimated,

together with any unknown parameters.

A variety of different approaches has been developed to undertake inference in SDEs. This

thesis focuses largely on Bayesian approaches which from a methodological point of view can be

grouped into the following three main categories:(a) sequential,(b) Markov chain Monte Carlo

(MCMC) and(c) variational approaches. Note that this classification is not unique and others are

possible.

2.5.1 Sequential approaches

The first category attempts to solve theKushner-Stratonovich-Pardoux(KSP) equations (Kushner,

1967a). TheKSPmethod (described briefly in Eyink et al. (2004)), can be applied to give the

optimal (in terms of variance minimising estimator) Bayesian posterior solution to the inference

problem, providing the exact conditional statistics (often expressed in termsof the mean and co-

variance) given a set of observations and serves as a benchmark for other approximation methods.

Initially, the optimal filtering problem was solved by Kushner and Stratonovich(Stratonovich,

1960; Kushner, 1962, 1967a) and later the optimal smoothing setting was given by an adjoint

(backward) algorithm due to Pardoux (1982). Unfortunately, the KSP method is computationally

intractable when applied to high dimensional non-linear systems (Kushner, 1967b; Miller et al.,

1994), hence a number of approximations have been developed to deal with this issue.

For instance, when the problem is linear the filtering part of the KSP equations (i.e. the forward

Kolmogorov equations) boil down to the Kalman and Bucy (1961) filter, whichis the continuous

time version of the well known Kalman filter (Kalman, 1960). When dealing with systems that

exhibit non-linear behaviour a variety of approximations, based on the original Kalman filter (KF),
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have been proposed to overcome these difficulties. The first approachis to linearise the model

(usually up to first order) around the current state estimate, which through a Taylor expansion,

requires the derivation of the Jacobian of the model evolution equations. However, this Jacobian

might not always be easy to compute. Moreover the model should be smooth enough in the time-

scales of interest, otherwise linearisation errors will grow causing the filterestimates to diverge.

This method is known as the extended Kalman filter (EKF) (Maybeck, 1979) and was succeeded

by a family of methods based on statistical linearisation exploiting the observationthat it is easier

to approximate a probability distribution than a non-linear operator.

A widely used method that has produced a large body of literature is the ensemble Kalman fil-

ter (EnKF) (Evensen, 2003), or when dealing with the smoothing problem the ensemble Kalman

smoother (EnKS) (Evensen and van Leeuwen, 1999). Recently another strategy has proposed that

rather than sampling this ensemble of particles randomly from the initial distributionit is prefer-

able to select adesign(i.e. deterministically chose them), so as to capture specific information

(usually the first two moments), about the distribution of interest. This method is often called the

unscented transformand the filtering method is thus referred to as the unscented Kalman filter

(UnKF), first introduced by Julier et al. (2000). Another popular, approach is the particle filter

by Kitagawa (1987), in which the solution of the posterior density (or KSP equations) is approxi-

mated by a discrete set of particles with random support (Kivman, 2003; Fearnhead et al., 2008).

This method can be seen as a generalisation of the ensemble Kalman filter, because it does not

make the Gaussian assumption when the ensemble is updated in the light of the observations. In

other words, if the dynamics of the system are linear then both filters should give the same answer,

given a sufficiently large number of particles (ensemble) members.

2.5.2 MCMC approaches

The second category applies Monte Carlo methods to sample from the posterior process, focusing

on areas (in the state space) of high probability, based on Markov chains(Neal, 1993). When

the dynamics of the system is deterministic, then the sampling problem is on the space of initial

conditions. In contrast, when the dynamics is stochastic the sampling problem ison the space of

(infinite dimensional) sample paths. Therefore MCMC methods for diffusionsare also known as

“path-sampling” techniques. Although early sampling techniques such as the Geman and Geman

(1984) Gibbs sampler can be applied to systems, convergence is often too slow. In order to achieve

better mixing of the chain and faster convergence other more complex and sophisticated techniques

were developed. Stuart et al. (2004), introduced theLangevin MCMCmethod, which essentially

generalises the Langevin equation to sampling in infinite dimensions. A similar approach is the

Hybrid Monte Carlo(HMC) method (see Duane et al. (1987)) which was later generalised forpath
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sampling problems by Alexander et al. (2005). Both algorithms (Langevin MCMC and HMC)

need information on the gradient of the target log-posterior distribution andupdate the entire

trajectory (sample path) at each iteration. They combine ideas of molecular dynamics, employing

the Hamiltonian of the system (including a kinetic energy term), to produce new configurations

which are then accepted or rejected in a probabilistic way using the Metropoliscriterion.

Following the work of Pedersen (1995), onsimulated maximum likelihood estimation(SMLE),

Durham and Gallant (2002) examine a variety of numerical techniques to refine the performance

of this method by introducing the notion of theBrownian bridge, between two consecutive obser-

vations, instead of the Euler discretisation scheme that was used in Pedersen (1995). This lead to

various “blocking strategies”, for sampling the sub-paths, such as the one proposed by Golightly

and Wilkinson (2006), as an extension to the previous “modified bridge” (Durham and Gallant,

2002). The work of Elerian et al. (2001); Eraker (2001) and Roberts and Stramer (2001) is based

on a similar direction, that is augmenting the state with additional data between the measured

values, in order to form a complete data likelihood and then use a Gibbs sampleror other sam-

pling techniques (e.g. MCMC). A rather different sampling approach is presented by Beskos et al.

(2006b), where an “exact sampling” algorithm (in the sense that there are no discretisation errors),

is developed that does not depend on data imputation between the observable values, but rather

on a technique calledretrospective sampling(see Papaspiliopoulos and Roberts (2008) for further

details). Although this method is very appealing and computationally efficient compared to other

sampling methods that depend on fine temporal discretisation to achieve sufficient accuracy, the

applicability of the method depends heavily on theexact algorithm, as introduced by Beskos et al.

(2006a).

2.5.3 Variational approaches

The final category (from a Bayesian point of view) of methodologies approximates the posterior

process using variational techniques (Jaakkola, 2001). A popular methodology, which is opera-

tional at theEuropean Centre for Medium-Range Weather Forecasts(ECMWF), is the four di-

mensional variational data assimilation method, also known as “4D-Var” (Dimetand Talagrand,

1986). This method seeks the most probable trajectory (or the mode), of the approximate poste-

rior smoothing distribution, within a predefined time window. This is found by minimising a cost

function which depends on the measured values and the model dynamics. However, this method

does not provide uncertainty estimates around the most probable solution. The “4D-Var” method,

as adopted by the ECMWF and others, makes the strong assumption that the model is either per-

fectly known, or that any uncertainties are negligible and hence can be ignored. A generalisation

of this strongperfect modelassumption, is to accept that the model is not perfect and should be
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treated as an approximate solution to the real equations governing the system.This leads to a

weak formulationof 4D-Var as described in Derber (1989); Zupanski (1996). The theory behind

theweak formulationwas introduced in early 70’s by Sasaki (1970) - several versions are described

in Tremolet (2006) and will be discussed later.

Another variational technique that seeks the conditional mean and variance of the posterior

smoothing distribution is described in Eyink et al. (2004). In this work Eyink,argues that the

ultimate goal of a data assimilation method is to recover not a specific history that generated the

observations, but rather the correct posterior distribution, conditionedupon the observations. To

achieve that amean fieldapproximation is applied to the KSP equations, which as discussed earlier

provides the optimal filtering and smoothing solution to the inference problem, from a Bayesian

perspective. More recently the work of Archambeau et al. (2007), suggested a rather different

approach, where the true posterior process is approximated by a time-varying linear dynamical

system (such as a non-stationary Gaussian process), rather than assuming a fully factorising form

to the joint posterior. This linear approximation assumption implies a fine time discretisation, if

good accuracy is to be achieved, and tries to optimise globally the approximate posterior process

in terms of minimising the Kullback-Leibler divergence (Kullback and Leibler, 1951), between

the two probability measures. This method is further reviewed in Chapter 4.

2.5.4 Non-Bayesian approaches

Although, this thesis addresses the inference problem from a Bayesian perspective, to provide

a more complete overview of the proposed methodologies, this section reviewsbriefly the main

non-Bayesian estimation techniques (for reviews see Nielsen et al. (2000) and Sorensen (2004)),

that have been developed for inference in partially observed diffusionprocesses. In general, the

methods cited here focus largely in estimating the model parameters (i.e. unknown parameters in

the drift and diffusion functions) and can be grouped into:(i) analytical and numerical approx-

imations of the true likelihood,(ii) estimating functions and(iii) indirect inference and efficient

method of moments (EMM).

The most appealing methods are those that approximate the true likelihood. Thisapproxima-

tion can, theoretically, be made arbitrarily accurate. There are three main types: The first one

provides numerical solutions to the Fokker-Planck equation (which is a partial differential equa-

tion)1 and was initially recognised by Lo (1988). Later, various implementations were introduced

by Hurn and Lindsay (1997) using spectral approximations and Jensenand Poulsen (2002) us-

ing the method of finite differences. The second method obtains estimates of thetrue likelihood

via simulations (Pedersen, 1995; Brandt and Santa-Clara, 2002; Hurnet al., 2003). A common

1Also known as the Kolmogorovforward equation.
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characteristic of these approaches is the use of a numerical scheme (such as the Euler) to move

from one state of the systemxk, at timetk, to the next statexk+1, at timetk+1, in n time steps.

Even with efficient modern computers both numerical approaches are quitecomputationally de-

manding. The third approach provides analytical, yet very accurate, discrete approximations to

the likelihood function (Florens-Zmirou, 1989; Shoji and Ozaki, 1997; Ait-Sahalia, 1999, 2002).

The core idea behind these methods is to replace the true transition density with another that has

closed-form solutions and includes the (hyper-) parameters� of the SDE (Equation 2.1). The

simplest case is to use as a proxy for the true transition pdf the Gaussian distribution such as

N (xk + f(t,xk;�) δt,Σδt). However, the resulting mathematical expressions are quite compli-

cated even for low order approximations. Moreover, the bias that is introduced due to the discrete

time approximation makes the estimates of the parameters inconsistent for any fixed sampling

interval.

Estimation via estimating functions is generally faster (Jacobsen, 2001). Roughly speaking,

an estimation function is defined asF(y,�) : ℜp→ℜ, where its arguments are the observationsy

and the model parameters�. The property of this function is that it goes to zero as the parameters

� tend to their optimal values (i.e.F → 0 as�→ �opt). An example is thescore functionyield-

ing the maximum likelihood estimator. However, for the SDEs the score function isnot available

therefore alternative solutions are sought. The so calledsimple estimating functionsare available

in explicit form but provide only estimators for parameters from the marginaldistribution (Kessler

and Sorensen, 1999; Sorensen, 2000). Still, they may be useful for preliminary analysis, for ex-

ample in combination withmartingale estimating functions. The latter are analytically available

for a few models but in general they must be simulated (Bibby and Sorensen, 1995). This basi-

cally amounts to simulating conditional expectations, which is faster than calculating conditional

densities as required by the numerical likelihood approximations mentioned above.

Indirect inference (Gourieroux et al., 1993) and EMM (Gallant and Tauchen, 1996), which

is closely related to the General Methods of Moments (Hansen, 1982; Hansen and Scheinkman,

1995; Duffie and Singleton, 1993), introduce discrete time auxiliary (usually wrong) models to ap-

proximate the true models. Then, the model parameters of the auxiliary model (e.g. �) are linked to

the true parameters� with the so-called binding function (i.e.�= ν(�)). Subsequently, maximum

likelihood estimates are obtained for the auxiliary (proxy) modelξML and the estimates for the

true parameters are obtained using the inverse of the binding function (i.e.�̂ = ν−1(ξML)). Never-

theless, the quality of the estimators depends heavily on the auxiliary model which, in essence, is

chosen arbitrarily.

Most of the aforementioned methods are, in principle, applicable to multivariatediffusions as

well. With a few exceptions this has yet to be demonstrated in practice. Moreover, the compu-
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tational cost will be even more substantial than for univariate processes. A more comprehensive

review for these methods can be found in Jeisman (2005).

2.6 Discussion

This chapter initially introduced the main building blocks that are used extensively later in the

thesis. An informal definition of stochastic processes, along with some useful properties and

some simple characteristic examples (i.e. the Gaussian and Wiener process),are also provided.

A thorough mathematical description of stochastic processes that would require proper stochastic

calculus is avoided. Instead a more practical approach is followed and relevant references are

cited.

The importance of partially observed diffusions was highlighted. The necessary limit con-

ditions that distinguish them from the other families of the stochastic processeswere given and

assumed to be satisfied for all the examples in the thesis. Furthermore, the notion of discrete

observations was further clarified.

Defining the problem addressed in the thesis is of great importance. The difficulty of obtaining

estimates of the system’s states together with unknown model parameters was stressed and the

major methodologies to tackle this problem were reviewed. Although a complete listof references

is not claimed the effort was to gather the most well known and widely accepted methods. In spite

of the fact that the inference problem here is placed within a Bayesian framework, alternative (non-

Bayesian) approaches that deal with the estimation of parameters in SDEs were also reviewed.
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Chapter 3 SYSTEMS STUDIED

“Essentially, all models are wrong, but some are useful.”
— George E. P. Box, English statistician.

3.1 Foreword

When developing new methodologies to solve the inference problem, as described in Chapter 2, it

is important to validate them on dynamical systems (or models) with known properties and broad

acceptance from the scientific community as benchmark models, before applying them to real

world problems. However, to avoid confusion, is also necessary to describe or define what the

terms “dynamical system”, “dynamical model” mean.

Virtually every physical process that humans observe can be described by a mathematical

model. That is a set of mathematical expressions (i.e. functions) that form relationships between

some properties of the process. Usually, these properties are denoted by a finite set of variables

(also known as thestate vector) and assumed to represent fully, or adequately enough, the state of

the process at any given time. This mathematical formulation that describes thetemporal evolution

of the process is known as adynamical system. Throughout this work the terms “system” and

“model” are used interchangeably.

The purpose of this chapter is to summarize and briefly describe the dynamical systems that

will be used later to test the algorithms developed. These vary in dimensionality and non-linearity,

ranging from univariate linear to forty dimensional non-linear. Characteristic examples are given

and the model equations are defined properly for all systems considered.

3.1.1 Chapter outline

Section 3.2, introduces the one dimensional Ornstein-Uhlenbeck process(OU). The linearity in the

assumed dynamics of this system allows many analytic calculations and inference to be performed

exactly. Next the univariate and strongly non-linear Double Well (DW) system is reviewed in

Section 3.3. To identify how the methods developed later scale in higher dimensions Section 3.4,

presents a stochastic version of the three dimensional chaotic Lorenz ’63system (L3D). The last

system considered is the forty dimensional stochastic Lorenz ’96 (L40D), followed by a discussion

section that concludes the chapter.

3.2 The Ornstein-Uhlenbeck process

The one dimensional linear Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930), origi-

nates from the physics literature and was proposed as a mathematical model for the velocity of a

particle undergoing Brownian motion (see Figure 2.1(b)). Here it is understood as a continuous
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Markov process with dynamics that can be represented by the following SDE:

dxt =−θxt dt+σ dwt , (3.1)

whereθ > 0 is the drift parameter,σ∈ℜ is the diffusion coefficient (noise standard deviation) and

wt ∈ℜ is the univariate Wiener process.

In the experiments that follow (see Chapter 6), this system is considered asa reference exam-

ple. Actually, the solution for the kernel covariance function is known exactly, which is induced

by the corresponding Gaussian (Markov) prior process. Karatzas and Shreve (1991), have shown

that Eq. (3.1) has the unique strong solution:

xt = exp{−θt}
(

x0+σ
∫ t

0
exp{θs}dws

)

, xt=0 = x0 . (3.2)

The OU processxt is a normally distributed random variable with mean and variance given

by:

⟨xt⟩=
〈

exp{−θt}
(

x0+σ
∫ t

0
exp{θs}dws

)〉

= ⟨exp{−θt}x0⟩+
〈

exp{−θt}σ
∫ t

0
exp{θs}dws

〉

= exp{−θt}⟨x0⟩+exp{−θt}σ
∫ t

0
exp{θs}⟨dws⟩

= exp{−θt}⟨x0⟩ , (3.3)

and

var[xt ] =
〈
(xt −⟨xt⟩)2〉

=

〈(

exp{−θt}
(

x0+σ
∫ t

0
exp{θs}dws

)

−exp{−θt}⟨x0⟩
)2

〉

= exp{−2θt}
〈(

(x0−⟨x0⟩)+σ
∫ t

0
exp{θs}dws

)2
〉

= exp{−2θt}
(
〈
(x0−⟨x0⟩)2〉+σ2

∫ t

0
exp{2θs}

〈
dw2

s

〉
)

= exp{−2θt}
(

var[x0]+σ2
∫ t

0
exp{2θs}ds

)

= exp{−2θt}
(

var[x0]+
σ2

2θ

∫ t

0
exp{2θs}(2θs)′ds

)

= exp{−2θt}
(

var[x0]+
σ2

2θ

[

exp{2θs}
]t

0

)

= exp{−2θt}
(

var[x0]+
σ2

2θ

[

exp{2θs}−1

])

= exp{−2θt}
(

var[x0]−
σ2

2θ

)

+
σ2

2θ
, (3.4)
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where⟨dws⟩= 0 and
〈
dw2

s

〉
= ds from the properties of the Wiener process (see Section 2.2). In

a similar manner the covariancecov(xt ,xs) is computed as follows:

cov(xt ,xs) = ⟨(xt −⟨xt⟩)(xs−⟨xs⟩)⟩

= ⟨xtxs⟩−⟨xt⟩⟨xs⟩

=

〈

exp{−θt}
(

x0+σ
∫ t

0
exp{θκ}dwκ

)

exp{−θs}
(

x0+σ
∫ s

0
exp{θλ}dwλ

)〉

−exp{−θ(t +s)}⟨x0⟩2

= exp{−θ(t +s)}
〈(

x0+σ
∫ t

0
exp{θκ}dwκ

)(

x0+σ
∫ s

0
exp{θλ}dwλ

)〉

−exp{−θ(t +s)}⟨x0⟩2

= exp{−θ(t +s)}
(
〈
x2

0

〉
+σ2

∫ t

0

∫ s

0
exp{θ(κ+λ)}⟨dwλdwκ⟩−⟨x0⟩2

)

= exp{−θ(t +s)}
(

var[x0]+
σ2

2θ

[

exp{2θs}−1

])

= var[x0]exp{−θ(t +s)}+ σ2

2θ

(

exp{−θ(t−s)}−exp{−θ(t +s)}
)

, (3.5)

with 0≤ s≤ t. Note that ifx0 ∼ N (0, σ2

2θ) then{xt}t∈T , becomes (strictly) stationary Gaussian

process with covariance function (equilibrium kernel):

cov(xt ,xs) =
σ2

2θ
exp{−θ(t−s)} . (3.6)

Otherwise, ifx0 is known exactly (i.e. var[x0] = 0), then the non-equilibrium kernel yields:

cov(xt ,xs) =
σ2

2θ

(

exp{−θ(t−s)}−exp{−θ(t +s)}
)

. (3.7)

From the above expressions it is clear that using the right kernel in a Gaussian process regres-

sion smoother, the exact (predictive) posterior process can be computed (Rasmussen and Williams,

2006).

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

t

x(
t)

Figure 3.1: Example of an OU trajectory defined onT = [0,20], with x0 = 0.

An example of an OU trajectory is shown in Figure 3.1, where the simulation is defined on

T = [0,20], with noise varianceσ2 = 0.2 and drift parameterθ= 1. Applications of the OU process
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can be found in many disciplines such as physics (e.g. modelling the velocity ofa particle) and

finance (e.g. modelling interest rates, currency exchange rates, commodity prices, etc.).

3.3 The double well system

The double well (DW), is a non-linear system with dynamics described by thefollowing stochas-

tically forced scalar differential equation:

dxt = 4xt(θ−x2
t ) dt+σ dwt , (3.8)

whereθ > 0, is the drift parameter andσ, wt are defined as in Eq. (3.1). The force (i.e. the drift

function) of this system arises from a double-well potential functionU(xt) =−2x2
t +x4

t , with three

equilibrium values atxt = 0 andxt =± 1. Notice that the drift function in Eq. (3.8), is simply the

derivative:−dU(xt)
dxt

= 4xt(1−x2
t ), for θ = 1.

As shown in Figure 3.2(a) the position of a particle at 0 is unstable, while at± 1 it is stable

in the absence of noise. However, within the current setting weak randomforces occur which

make the state of the systemxt fluctuate about one of the wells for rather long periods of time and

occasionally drive the particle from one basin to the other (see Fig. 3.2(b)). This effect is known

as “transition” between the two stable states.
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Figure 3.2: (a) The double well potential. The stable points in this example are at x=±1, while at
positionx= 0 exists the unstable point. (b) Two examples of DW sample paths including multiple
transitions between the two wells, defined onT = [0,50]. The parameter setting for both examples
is θ = 1, σ2 = 0.8 andx0∼ 0.5N (0,2σ2).

Systems of this type have been proposed, in the early ’80s, as simple models of the earth’s

climate exhibiting bimodality in which the two deterministic stable states represent conditions

such as “normal-age” and “ice-age” (Sutera, 1980; Nicolis and Nicolis,1981). Although a simple

system, the double well has served as a standard benchmark for data assimilation methods in a

number of references such as Miller et al. (1994, 1999); Eyink and Restrepo (2000); Eyink et al.

(2004); Archambeau et al. (2007, 2008).

38



Chapter 3 SYSTEMS STUDIED

3.4 The Lorenz ’63 (3D model)

The next system is the stochastic three dimensional chaotic Lorenz ’63 (L3D), driven by the fol-

lowing SDE:

d

⎡

⎢
⎢
⎢
⎣

xt

yt

zt

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

σ(yt −xt)

ρxt −yt −xtzt

xtyt −βzt

⎤

⎥
⎥
⎥
⎦

dt+

⎡

⎢
⎢
⎢
⎣

σx 0 0

0 σy 0

0 0 σz

⎤

⎥
⎥
⎥
⎦

d

⎡

⎢
⎢
⎢
⎣

wx
t

wy
t

wz
t

⎤

⎥
⎥
⎥
⎦
, (3.9)

or in a more compact form by:

dxt = f(xt) dt+Σ
1/2 dwt , (3.10)

wheref(xt) ∈ℜ3 is the drift function, with state vectorxt = [xt yt zt ]
⊤ ∈ℜ3 representing all three

dimensions,� = [σ ρ β]⊤ ∈ℜ3, is the drift parameter vector,Σ ∈ℜ3×3 is a (diagonal) covariance

matrix andwt ∈ℜ3 is an uncorrelated multivariate Wiener process.

The deterministic version of this model (i.e. without the noisy part of Eq. (3.9)) was first

introduced by Lorenz (1963) as a low dimensional analogue for large scale thermal convection in

the atmosphere. It is an approximate model of the convective motion of a fluid that is cooled from

above and heated from below. The state vector variables can be physically interpreted as follows:

xt represents the intensity of convective motion,yt the temperature difference between ascending

and descending currents andzt the distortion of the vertical temperature profile from linearity.
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Figure 3.3: Illustration of the L3D chaotic behaviour. Both examples are presented as time series
on each separate dimension. The time window isT = [0,20] for both solutions and the drift vector
� = [10 28 2.6667]⊤.

This multi-dimensional non-linear system is from the first dynamical systems that was shown

to produce chaotic behaviour when its drift parametersσ, ρ andβ lie within a specific range of

values. The choice of the drift values, in this work, are those to producechaotic behaviour (σ =
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10.0, ρ = 28.0 andβ = 8/3)1 and they are the most common in use.Chaotic behaviourmeans the

solution of the system over a long time window evolves unpredictably (althoughdeterministically),

when small changes occur in the initial conditions (i.e. the initial state vectorx0), however it is

a well known fact that unstable periodic orbits may occur even in chaotic dynamics. Figure 3.3

demonstrates this chaotic effect on two examples, of the deterministic L3D. Bothexamples are

presented as time series in each separate dimension and their initial conditions were identical

except from the first dimensionxt , of the state vector. More precisely, the initial state vector for

the blue continuous line isxblue
0 = [−11.8114−9.9392 26.5024]⊤, whereas for the red dashed line

is xred
0 = [−11.3500−9.9392 26.5024]⊤. It is obvious that the two examples start to deviate after

the second time unit (t = 2), and their paths remain different until the end of their time window.

The incorporation of additive noise to the system equations (see Eq. 3.10), makes the behaviour

of the system more unpredictable and adds one more degree of difficulty when applying data

assimilation methods. This is illustrated in Figure 3.4, where the same solutionxt is present in

the smooth deterministic version (left column) and the corresponding noisy one (right column).

Both examples share the same initial state vectorx0, they are defined onT = [0,50] and the noisy

simulation has diffusion covariance matrixΣ = diag{7,7,7}. In addition, for all the simulations

that follow the deterministic equations were integrated forward in time forTburn = 5000 units, in

order to get the initial state vectorx0 on the attractor and then the stochastic sample path was

generated.

The Lorenz ’63 (or L3D) system, has been studied extensively not onlyas a standard bench-

mark but also on its own terms and has produced a large number of references (see for example

Evensen (1997); Evensen and van Leeuwen (1999), Miller et al. (1994, 1999) and Hansen and

Penland (2006, 2007)).

3.5 The Lorenz ’96 (40D model)

Lorenz (1996), introduced a toy model to represent some atmospheric quantity, which consisted

of N > 0 variablesxi
t , whose evolution is governed byN differential equations, as follows:

dxi
t

dt
= (xi+1

t −xi−2
t )xi−1

t −xi
t +θ .

HereN is set to forty (i.e.i ∈ {1,2, . . . ,40}), with cyclic indicessuch asxi−N
t = xi+N

t = xi
t and

θ = 8.0 is the forcing (drift) parameter. These 40 variables form a cyclic chain and can be seen as

meteorological variables of 40 sites which are spaced equally around a latitude circle (see Figure

3.5).

1In practice, for the experiments that follow, this parameter was set toβ = 2.6667.
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Figure 3.4: L3D convection equations: Projections of the deterministic and stochastic examples in
phase space. Both simulations have the same initial conditionsx0 = [0.9961, 1.4949, 14.1989]⊤.

The equations contain quadratic, linear, and constant terms simulating advection, internal

damping and external forcing of some atmospheric variablexi
t , therefore it can be seen as a mini-

malistic weather model (Lorenz and Emanuel, 1998).

However, in the current framework additive noise is added in every equation, forming the follow-

ing stochastic differential equation:

dxt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(x2
t −x39

t )x40
t −x1

t +θ

(x3
t −x40

t )x1
t −x2

t +θ
...

(x1
t −x38

t )x39
t −x40

t +θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

dt+Σ
1/2 dwt , θ > 0∈ℜ . (3.11)

The state vectorxt consists of forty variables
(

i.e. xt =
[
x1

t x2
t . . . x40

t

]⊤)
, Σ ∈ ℜ40×40 is the
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Figure 3.5: Illustration of the sites’ placement, at equal distances, on a circular grid forN = 40.

diagonal system noise covariance, the drift parameterθ is constant (same for all variables and

independent of time) andwt ∈ℜ40 is a multidimensional standard Wiener process.
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Figure 3.6: (a) an example of L40D simulation, displaying all forty dimensions.(b) typical time-
series example of the 25’th dimension. All simulations are performed onT = [0,20].

Figure 3.6(a), presents an example of the stochastic L40D simulation on a time interval of

twenty units (T = [0,20]). To make the effect of the added noise more apparent, Figure 3.6(b)

shows only the 25’th dimension (i.e. the variablex25
t as a function of time). The strength of the

random fluctuations, in this particular example, has covariance matrixΣ = diag{7,7, . . . ,7}. A

more thorough study of the properties of this proposed system (deterministicversion) and some

variations of it can be found in Lorenz (2005), as well as Orrell et al. (2001); Orrell (2001, 2003).

3.6 Discussion

This chapter has presented the dynamical systems that are used later in the thesis to test the approx-

imation algorithms developed. Initially, a clarification took place concerning the terms “system”

and “model” to avoid confusion. The aim here was not to provide a full description of the systems,

but rather to briefly highlight some of their properties and give some characteristic examples.

The choice of the systems was mainly because of their increased dimensionalityand non-
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System Dimensions Linear Chaotic Solver �t

OU 1 yes no Euler-Maruyama 0.01

DW 1 no no Euler-Maruyama 0.01

L3D 3 no yes Euler-Maruyama 0.01

L40D 40 no yes Euler-Maruyama 0.01

Table 3.1: Summary of dynamical systems. Column “Solver” refers to the numerical integration
method that was used to produce the “true” trajectories that generated the observations. In addi-
tion, the variable�t represents the time discretisation step of the numerical integration method.
Note that when the system is marked as “Chaotic”, it implies that their model parameters (i.e.
drift vector�), lie within the regimes that produce this chaotic behaviour.

linearity, starting with the one dimensional linear OU process and finishing with the forty di-

mensional non-linear Lorenz ’96 (as seen in Table 3.1). Moreover, thevalue of these systems is

reflected by the number of references that can be found in the literature.Hence a broad acceptance

as benchmark models is evident.

Since all the simulations took place on digital computers the “truth”, of each system, was

generated with numerical integration schemes that discretised the model equations and solved

them forwards in time. The method of choice here is the simple first order Euler-Maruyama

scheme (Kloeden and Platen, 1999), keeping the time discretisation stepδt small, so that good

accuracy is achieved.
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Chapter 4 THE VARIATIONAL GAUSSIAN PROCESS APPROXIMATION ALGORITHM

4.1 Foreword

When modelling real world dynamical systems, one must take into account thatin general the

prior process is not Gaussian. Subsequently, if the prior process is non-Gaussian then the posterior

process is also non-Gaussian. If the process is assumed Markovian (see definition in Chapter 2),

then any marginal probability can be expressed as a product of the conditional probabilities (i.e.

the transition kernels). However, even for the prior process (assumingis non-linear) that would

require the solution of the Fokker-Plack equation, which is a partial differential equation. For the

majority of the real systems this is not possible, therefore approximation methods are sought.

A popular approximation method in machine learning is theGaussian process regression

(MacKay, 1998; Rasmussen and Williams, 2006; Osborne, 2007). The idea of the Gaussian pro-

cess regression modelling is to place a prior distributionp(xt) directly on the space of functions

and then perform inference in a Bayesian way. Alternatively, this can beseen as a generalization

of the Gaussian distribution over a finite vector space. Hence the approximation reduces to the

approximation of a, possibly large, multivariate (but finite dimensional) vector. So the important

feature that the process is infinite dimensional almost never plays any practical role.

This chapter reviews the recently proposed variational Gaussian process approximation (here-

after VGPA) method, as was first introduced in Archambeau et al. (2007). This algorithm, follows

the variational method (Jaakkola, 2001) to define a linear (Gaussian) process approximationq

to the true posterior processp. This is done by minimising the Kullback-Leibler divergence be-

tween the two posterior measures, KL[q∥p]. Unlike other variational approaches that enforce a

factorising posterior density, in an infinite dimensional setting such formulationdoes not make

much sense. However, such a continuous time setting is not new (Eyink et al.,2004; Apte et al.,

2007). The VGPA algorithm, was initially proposed for solving the state estimation(smoothing)

problem and later was extended by the authors to include also estimation of (hyper-) parameters

(Archambeau et al., 2008).

4.1.1 Chapter outline

The remainder of this chapter is detailed as follows. Section 4.2 introduces thebasic setting of the

the SDE with the additive noise and the model for the discrete time observations of the algorithm.

The core of the VGPA algorithm is reviewed in Section 4.3, where the Bayesian framework is

defined first, in terms of the posterior conditional density, and then the so called variational free

energyis defined and analysed. Section 4.4 outlines the proposed state estimation (smoothing)

algorithm and subsequently two approaches of estimating the (hyper-) parameters are described in

Section 4.5. Both state and parameter estimation procedures are summarised bypseudocodes in
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Tables 4.1 and 4.2 respectively. The chapter concludes with a discussion.

4.2 Basic setting

Equation (2.1) defines a system with multiplicative (i.e. state dependent) systemnoise. The VGPA

framework considers diffusion processes with additive system noise (Archambeau et al., 2007;

Beskos et al., 2006b). At first this might seem restrictive, however as stated in Kloeden and Platen

(1999), re-parametrisation makes it possible to map a class of multiplicative noise models into this

additive class. Hence, the following SDE is considered:

dxt = f(xt) dt+Σ
1/2 dwt , dwt ∼N (0,dtI) (4.1)

wherext ∈ℜD is the (latent) state vector,f(xt) ∈ℜD is (usually) a non-linear drift function,Σ ∈
ℜD×D is the noise covariance matrix which for simplicity is assumed diagonal (i.e.Σ= diag{σ2

i }
for i = 1,2, . . . ,D) and {wt}t∈T is the standardD dimensionalWiener process. Moreover the

dependency of the drift functionf(xt) to the parameter vector� has been suppressed for notational

convenience.

Observation model

The stochastic process{xt}t∈T is assumed to be observed at a finite set of discrete time instants

{tk}Kk=1, leading to a set of discrete time observations{yk ∈ℜd}Kk=1. In addition the observations

are corrupted by i.i.d. Gaussian white noise. Hence:

yk = h(xtk)+�k , �k ∼N (0,R) . (4.2)

Moreover, it is further assumed that the dimensionality of the observation vector is equal to the

state’s vector (i.e.d = D) and that the discrete time measurements are “direct observations” of the

state variables (i.e.yk = xtk + �tk). This assumption simplifies the presentation of the algorithm

and is the most common case in practice. Adding arbitrary observation operators to the equations

only affects the system in the observation energy term in Eq. (4.4) and canbe readily included if

required.

4.3 Approximate inference for diffusions

In this algorithm inference is performed on theconditional posterior distributionof the state vari-

ables given the observations, thus following the Bayesian paradigm the posterior measure is given

as follows:

ppost({xt}t∈T ∣y1:K) =
1
Z

K

∏
k=1

p(yk∣xtk)pprior({xt}t∈T) , (4.3)
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whereK denotes the number of noisy observations,Z is the normalising marginal likelihood (i.e.

Z = p(y1:K)), ppost represents the posterior measureover paths{xt}t∈T , pprior represents the prior

measure over paths defined by Eq. (4.1) andp(yk∣xtk) is the likelihood for the observation at time

tk from Eq. (4.2).

4.3.1 Variational Free energy

The VGPA algorithm approximates the true posterior process by another that belongs to a family

of tractable ones, in this case the Gaussian processes. This is achieved by minimising the so called

“variational free energy”, defined as follows:

F (q(x∣Σ),�,Σ) =−
〈

ln
p(y1:K ,x∣�,Σ)

q(x∣Σ)

〉

q(x∣Σ)

, (4.4)

wherex = {xt}t∈T , p is the true posterior process,q is theapproximateposterior process and

⟨.⟩q(x∣Σ) denotes the expectation with respect toq(x∣Σ). As shown in Archambeau et al. (2008),

see also Appendix A, this expression provides an upper bound to the negative log marginal likeli-

hood− ln p(y1:K ∣�,Σ):

− ln p(y1:K ∣�,Σ) = F (q(x∣Σ),�,Σ)−KL [q(x∣Σ)∥p(x∣y1:K,�,Σ)] (4.5)

≤ F (q(x∣Σ),�,Σ) , because KL≥ 0 . (4.6)

However, for this bound to be finite a critical assumption takes place. The system noise covariance

(i.e.Σ), for both processesp andq must be the same. Otherwise the KL[q∥p]→∞, (Archambeau

et al., 2008).

4.3.2 Optimal approximate posterior process

The approximation of the true posterior process by a Gaussian process implies thatq will be

defined by alinear SDE. It follows that:

dxt = gL(xt) dt+Σ
1/2 dwt , where gL(xt) =−Atxt +bt , (4.7)

with At ∈ ℜD×D andbt ∈ ℜD define the time varying linear drift in the approximating process,

and{wt}t∈T is aD-dimensional Wiener process with respect to the approximate measureq. Both

of these variational parametersAt andbt are time dependent functions that need to be optimised

as part of the estimation procedure. The time dependence of these parameters is necessary due to

the non-stationarity that is introduced in the process by the observations.

Continuing the derivation of Equation (4.4), as given in Appendix A, leadsto the following

expression:

F (q(x),�,Σ) = KL [q0∥p0]+
∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

k

δ(t− tk)dt , (4.8)
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wheret0 andt f define the initial and final times of the total time window (i.e.T = [t0, t f ]), δ(⋅)
is Dirac’s delta function, KL[q0∥p0] is a shorthand notation for the KL at the initial state (i.e.

KL [q(x0)∥p(x0)]) and the energy functions are given by:

Energy from the SDE:

Esde(t) =
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

. (4.9)

Energy from the observations:

Eobs(t) =
1
2

〈

(yt −xt)
⊤R−1(yt −xt)

〉

qt

+
d
2

ln(2π)+
1
2

ln ∣R∣ , (4.10)

wherey = {yt , t0≤ t ≤ t f } ∈ℜd is written as a continuous-time observable process; the discrete

time nature of the actual observations adds the delta function in Equation (4.8).

4.3.3 Gaussian process posterior moments

The Gaussian marginal at time ’t’ is defined as follows:

q(xt) = N (xt ;mt ,St) , t ∈ T , (4.11)

wheremt ∈ ℜD andSt ∈ ℜD×D, are respectively the marginal mean and covariance at time ’t’.

The time evolution of this general time varying linear system in Eq. (4.7), is determined by two

ordinary differential equations (ODEs), one for the marginal meansmt and one for the marginal

covariancesSt (see Eq. 4.11). These are given by the following equations (see Kloeden and Platen,

1999, Ch. 4):

ṁt =−Atmt +bt , (4.12)

Ṡt =−AtSt −StAt
⊤+Σ , (4.13)

and thus become functionals ofAt andbt , whereṁt ∈ℜD andṠt ∈ℜD×D denote the time deriva-

tives dmt
dt and dSt

dt respectively.

4.4 State estimation (smoothing algorithm)

The parameters that need to be estimated, in order to find the optimal Gaussian process approxi-

mation,qt , are the variational linearAt and biasbt parameters (recall that these are also functions

of time), and the marginal at time ’t’ meansmt and covariancesSt .

However, Equations (4.12) and (4.13) are constraints to be satisfied ensuring consistency in

the algorithm (Archambeau et al., 2007, 2008). One way to enforce theseconstraints, within a
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predefined time window[t0, t f ], is to formulate the followingLagrangian, and then look for its

stationary points:

L = F (q(xt ∣Σ),�,Σ)−
∫ t f

t0

⎛

⎝�⊤t (ṁt +Atmt −bt)
︸ ︷︷ ︸

ODE for the means

+ tr{Ψt (Ṡt +AtSt +StAt
⊤−Σ)

︸ ︷︷ ︸

ODE for the covariances

}

⎞

⎠ dt ,

(4.14)

where�t ∈ ℜD, Ψt ∈ ℜD×D are time dependent Lagrange multipliers, withΨt being symmetric

matrix. Given a set of fixed parameters for the diffusion coefficientΣ and the drift�, minimising

this quantity Eq. (4.14) and hence the free energy Eq. (4.4), will lead to theoptimal (in the KL-

sense) approximate posterior process (Minka, 2005).

Next, taking the functional derivatives ofL , with respect to the parameters of interest results

in the following equations:

∇At L = ∇At Esde(t)−2ΨtSt −�tm⊤t (4.15)

∇bt L = ∇bt Esde(t)+�t (4.16)

∇mt L = ∇mt Esde(t)+ �̇t−A⊤t �t (4.17)

∇St L = ∇St Esde(t)+ Ψ̇t −2ΨtAt , (4.18)

where all these gradients along with the functional gradients ofEsde(t), with respect toAt , bt , mt

andSt , are derived in Appendix A. A closer look at Equations (4.17) and (4.18), shows that setting

them equal to zero and rearranging results in a set of ordinary differential equations that describe

the time evolution of the Lagrange multipliers�t andΨt :

�̇t =−∇mt Esde(t)+A⊤t �t (4.19)

Ψ̇t =−∇St Esde(t)+2ΨtAt . (4.20)

Nonetheless, these ODEs must include the effect of the observations.Thisis done with twojump

conditions, which are given by:

�(t+k ) = �(t−k )−∇mt Eobs(tk) (4.21)

Ψ(t+k ) =Ψ(t−k )−∇St Eobs(tk) , (4.22)

where the superscriptst−k andt+k indicate times just before and after the observation time and the

functional derivatives of∇mt Eobs(tk) and ∇St Eobs(tk) are derived in Appendix A. Due to their

discrete time nature the observations create an instantaneous “shock” in thesystem, at measure-

ment times, whose amplitude is given by the functional derivatives of the observation energy term

(Eobs), with respect to the marginal mean and variances. These equations are necessary to ensure

that the posterior distribution Eq. (4.3) is continuous in time. One must note that choosing another
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formulation for the estimation problem (i.e. without the use of Lagrange multipliers) different

forms of jump conditionsmight be available (Eyink et al., 2004).

A possible algorithm that solves the problem of estimating the optimal Gaussian approximate

process, was introduced in Archambeau et al. (2008) and included aforward in time (t0→ t f )

solution of the ODEs for the means and the covariances (Equations 4.12 and4.13), followed by

a backwardin time (t0← t f ) solution of the ODEs for the Lagrange multipliers (Equations 4.19

and 4.20), and at the end take onegradient step(Equations 4.15 and 4.16). This gradient based

algorithm, is briefly summarized in the pseudocode as shown in Table 4.1.

Optimal Gaussian process estimation algorithm

1: fix: t0, t f , �, Σ, R, n= 1, Nmax= 1000 \* set initial values *\

2: initialise
(

{At}t f
t=t0 ,{bt}t f

t=t0 ,m0 ,S0

)

\* initialise the algorithm *\

3: while (n≤ Nmax) \* inner-loop (START) *\

4: fwd-ODEs→{mt ,St}t f
t=t0 \* compute marginal moments *\

5: likelihood →{Eobs ,∇mt Eobs ,∇St Eobs}Kk=1 \* observation likelihood *\

6: prior →{Esde,∇mt Esde,∇St Esde}t f
t=t0 \* prior process energy *\

7: bwd-ODEs→{�t ,Ψt}t0t=t f
\* ensure consistency *\

8: compute{KL0} \* KL at time t=0 *\

9: compute{∇At L ,∇bt L}
t f
t=t0 \* new gradients *\

10: update{A∗t ,b∗t }
t f
t=t0 \* update variational params *\

11: At ← A∗t , bt ← b∗t \* set the new At and bt *\

12: checkL for convergence \* compute Lagrangian *\

13: n← n+1 \* increase loop counter *\

14: end while \* inner-loop (END) *\

15: return (L ,{At ,bt ,mt ,St ,�t ,Ψt}t f
t=t0) \* output (optimal) values *\

Table 4.1: Pseudocode of the optimal Gaussian process approximation algorithm in practice. After
initialising all the necessary parameters the algorithm iterates, given a fixed set of drift and noise
parameters (�, Σ andR), to minimise the Lagrangian cost function. The backward ODEs start
with �(t f ) = 0 andΨ(t f ) = 0, because at the final time there are no consistency constraints.

4.5 Hyper-parameter estimation

The classical approach to parameter estimation, from incomplete data, is the Expectation - Max-

imization (EM) algorithm, that was first introduced by Dempster et al. (1977) and later extended

to partially observed diffusions by Dembo and Zeitouni (1986). However, even though the EM

algorithm is well studied with a broad range of applications it can not be applied successfully in
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the current variational framework, because the approximate posterior distributionqt , induced by

Eq. (4.7), is restricted to have the same diffusion coefficientΣ. Therefore, although an EM ap-

proach can be used to estimate the drift parameters�, the system noiseΣ would be held constant

during the Maximization step. As a result, different approaches for estimating the parameters have

to be adopted.

4.5.1 Discrete approximations to the posterior distributions

As shown in Equation (4.6), thevariational free energyprovides an upper bound to the negative

log-marginal likelihood. Thus the negativefree energycan substitute the log marginal likelihood

and by choosing suitable prior distributionsp0(�) andp0(Σ), � andΣ can be treated as random

variables and discrete approximations can be constructed to the posterior distribution over the

(hyper-) parameters.

For example consider the drift parameters�. Initially a set of pointsD� = {�i}nθ
i=1 is selected

to approximate the posterior distribution and then the variational approximation method runs to

convergence with these selected values. This yields to a corresponding set of free energy values

DF = {F (q(x∣Σ),�i,Σ)}nθ
i=1 that can be used to evaluate exp{−F (q(x∣Σ),�i,Σ)}, instead of the

true marginal likelihoodp(y1:K ∣�,Σ):

p(�∣y1:K) ∝
{

exp{−F (q(x∣Σ),�i,Σ)}p0(�i)

}nθ

i=1
, (4.23)

wherenθ ∈ N is the number of discrete points. Similar discrete approximations, to the posterior

distribution, can be computed for the system noiseΣ. In the above procedure the parameters

that are not approximated are kept fixed (to their true values). In the simulations that follow

(Chapter 7), Gamma priors are defined for the drift parameters and inverse Gamma for the system

noise covariance, i.e.p0(�) = G(α,β) andp0(Σ) = G−1(a,b). The values of the parametersα,

β, a andb, were chosen such as the mean value of the distribution coincides to the true values

of � andΣ, but with large variance to reflect the initial “ignorance” about the true values of the

parameters.

4.5.2 Maximum likelihood type-II point estimates

Another approach for estimating the (hyper-) parameters, as suggestedin Archambeau et al.

(2008), is also based on the bound that thevariational free energyprovides to the marginal like-

lihood Eq. (4.6), but instead of constructing approximate posterior distributions to the (hyper-)

parameters, as in the previous section, it employs a conjugate gradient algorithm to provide point

estimates. More specifically, the algorithm works in an outer / inner loop optimisation framework,

where in the inner loop the variational approximation framework is used to compute the optimal
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approximate posterior processq(xt), given a fixed set of the parameters� andΣ (Table 4.1). Then,

in the outer loop, a gradient step is taken to improve the current estimates of the(hyper-) param-

eters. This procedure, as shown in Table 4.2, alternates until the gradients of the optimal process

Eq. (4.14), with respect to the� andΣ are zero (∇�L = 0 and∇ΣL = 0), or the estimates cannot

improve any further (i.e. the optimal Gaussian process estimated in the inner loop does not change

significantly, e.g.∆L ≤ 1.0e−6 in Table 4.2).

ML type-II parameter estimation algorithm

1: fix: { �0, Σ0, n= 1, Nmax= 1,000} \* initialise the algorithm *\

2: �← �0, Σ←Σ0 \* set the initial parameter values *\

3: L ← inner-loop(�, Σ) \* optimal process from Table 4.1*\

4: while (n≤ Nmax) \* outer-loop (START) *\

5: compute{ ∇�L , ∇ΣL} \* gradients w.r.t. the parameters *\

6: if (∇�L⊤∇�L == 0 or ∇ΣL⊤∇ΣL == 0) \* check if the gradients are zero *\

7: return {�, Σ} \* return the old parameter values *\

8: end

9: update{�∗, Σ∗} \* new parameter values *\

10: L∗← inner-loop(�∗, Σ∗) \* new cost function value *\

11: if { ∆L∗ & ∆�∗ & ∆Σ∗} ≤ 1.0e−6 \* check for termination *\

12: return {�∗, Σ∗} \* return the new parameter values *\

13: end

14: L ← L∗, �← �∗, Σ←Σ
∗ \* set the old values to the new *\

15: n← n+1 \* increase the loop counter by one *\

16: end while \* outer-loop (END) *\

17: return {�, Σ} \* if it has not convergence yet *\

Table 4.2: Pseudocode of the “ML type-II” point estimation algorithm in practice. Every time
the parameters are updated theinner-loop(�,Σ) function, see Table 4.1, recomputes the optimal
Gaussian process approximation for a given set of fixed parameter values.

This method is referred here asMaximum-Likelihood type-IIor ML type-II, for brevity. In

practice, to make the comparison with other Bayesian estimation methods (Chapter7) more fair,

prior distributions over the (hyper-) parameters have been assigned, as shown in the previous sec-

tion (i.e. p0(�) =G(α,β) andp0(Σ) =G−1(a,b)). Therefore the algorithm provides approximate

MAP point estimates.
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4.5.3 Parameters to estimate

The parameters to estimate are the prior mean and variance over the initial statex0, the parameters

in the drift function�, the diagonal elements of the system noise covariance matrixΣ and the

parameters related to the observable processR. When using the point estimate approach, the

gradients of the (cost) Lagrangian function, with respect to the parameters of interest need to be

computed. These are given as follows.

Initial state: The initial approximate posterior processq(x0), is equal toN (m0,S0), where the

initial true posterior processp(x0) is chosen to be an isotropic Gaussian (i.e.N (�0,τ0I)). Taking

the gradients of Eq. (4.14), with respect tom0 andS0 leads to the following expressions:

∇m0L = �0+ τ−1
0 (m0−�0) (4.24)

∇S0L =Ψ0+
1
2

(
τ−1

0 I −S−1
0

)
. (4.25)

Drift parameters: Similarly the gradient of Eq. (4.14), with respect to� is given:

∇�L =
∫ t f

t0
∇�Esde(t)dt (4.26)

=
∫ t f

t0

〈

(f(xt)−gL(xt))
⊤
Σ
−1∇�f(xt)

〉

qt

dt , (4.27)

where∇�Esde(t) has been computed as shown in Appendix A.

System noise: The gradient of Eq. (4.14), with respect to the system noise covarianceΣ is given

by:

∇ΣL =
∫ t f

t0
∇ΣEsde(t)dt+

∫ t f

t0
Ψtdt (4.28)

=−
∫ t f

t0

1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

Σ
−1dt+

∫ t f

t0
Ψtdt , (4.29)

where the matrixΣ is assumed symmetric.

Observation noise: Finally, the gradient of Eq. (4.14) with respect to the observation noise

covarianceR is given by:

∇RL =
∫ t f

t0
∇REobs(t)∑

n
δ(t− tn)dt (4.30)

=
1
2

R−1
∫ t f

t0

(

I −
〈

(yt −h(xt))(yt−h(xt))
⊤
〉

qt

R−1
)

∑
n

δ(t− tn)dt , (4.31)

where the general observation operatorh(⋅) is left to provide a more general expression. In the case

that this operator is linear (or even identity), then the above expression can be further simplified.
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4.6 Discussion

This chapter reviewed a recently proposed variational Gaussian process approximation algorithm,

for inference in partially observed diffusions. The main novelty of this work is that the posterior

conditional distribution is over infinite dimensional sample paths, rather than a finite dimensional

multivariate posterior as in standard Gaussian process inference. The algorithm as presented also

covers multivariate systems and is derived in a continuous time framework. However, this ap-

proach is not new and the benefits of modelling the problem in continuous time first and then

discretising have been established by Apte et al. (2007). Moreover, one difference with previous

work on the same direction is that the new VGPA algorithm provides a natural way to estimate the

model parameters.

So far, issues concerning discretisation schemes and initialisation of the variational parameters

have not been discussed. As will shown in following chapters when solving the problem on a

digital computer the continuous time framework must be discretised. The choicefor the prior

SDE Equation (4.1), is the simple Euler-Maruyama, although other schemes are also possible

and their effect on the performance of the algorithm is still an open question. The initialisation

of the variational parametersAt andbt can be done in many ways. All the analytic derivations

of the VGPA framework for the systems studied in this thesis are shown in Appendix D. Also,

expressions that can initialise these parameters optimally are given. In practice, the univariate

systems (OU and DW) could be initialised almost arbitrarily, showing good robustness. On the

contrary, more care should be taken in the multivariate systems (L3D and L40D). Nevertheless,

it is not yet clear whether this sensitivity of the algorithm in these systems is dueto their higher

dimensionality or their chaotic behaviour.
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5.1 Foreword

This chapter derives and presents a new radial basis function framework that extends the varia-

tional Bayesian algorithm for approximate inference in diffusion processes, as discussed in Chap-

ter 4. It is shown that the new radial basis function approximation based algorithm not only

converges to the original VGPA algorithm, but also has beneficial characteristics when estimat-

ing (hyper-) parameters. The new approach is validated on three non-linear dynamical systems,

namely the univariate stochastic double well (DW), and the multivariate Lorenz ’63 (L3D) and

Lorenz ’96 (L40D). Results show that this new approach is able to recover good estimates of the

system and noise parameters in the multivariate case, even for chaotic systems.

5.1.1 Chapter outline

Initially, the main characteristics and benefits of using RBFs are highlighted. This is followed by

the main contribution of this chapter, which is the (global) approximation, of the aforementioned

variational Bayesian inference algorithm (see Chapter 4 and also the references of Archambeau

et al. (2007, 2008)), in terms of RBF expansion. For this purpose the new RBF approximation

framework, for the general multidimensional case, will be derived and explained in detail. To

validate this new approach a series of experiments have been performed.Results for state estima-

tion are given in Section 5.4, and for (hyper-) parameter estimation in Section5.5. The chapter

concludes with a thorough discussion concerning implementation and other issues.

5.2 Radial basis function networks

Radial basis function networks are a class of artificial neural networks, that were introduced as

an alternative to multi-layer perceptrons (MLP) (Bishop, 1995). They originate from techniques

of performing interpolation on multivariate data, but their use can also be found in function ap-

proximation (Broomhead and Lowe, 1988), classification problems, time series prediction and

so on. Two of the main features that make the use of RBF networks attractiveare the simplicity

of its architecture (usually only one layer of hidden units) and the fact thatthe activation of the

hidden units is determined by the distance of the input vector from a prototypevector (also known

as the “origin”). These two characteristics make the training methods used forRBF networks

substantially faster than those required when training MLP networks (Bishop, 1995).

Typically a RBF network consists of three layers, as shown in Figure 5.1. The first is referred

to as the input layer, the second is the hidden units (i.e. the basis functions) and the last is the

output layer.
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Figure 5.1: Typical architecture of a RBF network. The vectorx is used as input to all RBFs, each
with different parameters. The output of the networky, is a linear combination of the weighted
radial basis functions outputs�1:M.

In the context of function approximation, which is of primary interest, the approximation of a

multidimensional function,f (x) : ℜD→ℜ, is performed by a set ofD-dimensional basis functions

which are defined as:

φi(x) = φi(∥x−ci∥) , (5.1)

where∥.∥ denotes the Euclidean distance,φi(x) : ℜD→ ℜ, is the basis function,ci ∈ ℜD is the

i’th centroid andi ∈N ∗.

Given this setting, the approximation off (x) is given by:

f (x)≈ f̃ (x) =
L

∑
i=0

wi×φi(x) , (5.2)

wherewi ∈ ℜ is the i’th weight andL ∈ N ∗ is the total number of basis functions. A common

choice of basis functions in the literature, is the Gaussian or square exponential kernel, as defined

in Equation (5.6), (Verleysen and Hlavackova, 1994; Benoudjit et al., 2002). However, depend-

ing on the specific problem other choices of basis functions have also been proposed, such as

sigmoidal (Tsai et al., 1996).

Theoretical guidance on how many basis functions one needs to use, or which family of basis

functions is the most appropriate, in the context of approximate inference for diffusion processes,

have yet to be established, and some empirical results are presented later.

5.3 Global approximation of the variational parameters

The idea of approximating continuous (or discrete) functions by RBFs is far from new (Kurkova

and Hlavackova, 1994). Here, the complexity of the original VGPA algorithm is controlled by
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using RBFs to approximate the time varying variational parameters (At andbt , see Eq. (4.7)). In

the original variational framework, these functions are discretized with a small time discretisation

step (e.g.δt = 0.01), resulting in a set of discrete time variables that need to be optimised during

the process of minimising the free energy.

The size of that set (number of variables) scales proportional with the length of the time win-

dow of inference, the dimensionality of the data and the time discretisation step. In total one needs

to infer:

Ntotal = (D+1)×D×∣t f − t0∣×δt−1 , (5.3)

variables, whereD is the system dimension,t0 andt f are the initial and final times and the time

stepδt must be small for numerical stability.

By replacing the discretized time varying functionsAt andbt , with RBF expansions the fol-

lowing expressions are obtained:

Ãt =
LA

∑
i=0

Ai×φi(t) and b̃t =
Lb

∑
i=0

bi×πi(t) , (5.4)

whereAi ∈ℜD×D andbi ∈ℜD are the “weights”,φi(t), πi(t) : [0,∞]→ℜ are fixed basis functions

(regarded here as functions of time) andLA, Lb ∈ N ∗, are the total number of RBFs considered.

Therefore the new (approximate) expression for theLagrangian becomes:

L̃ = F̃ (q(xt),�,Σ)−
∫ t f

t0
�⊤t (ṁt + Ãtmt− b̃t) dt−

∫ t f

t0
tr{Ψt(Ṡt + ÃtSt +StÃ⊤t −Σ)} dt . (5.5)

The number of basis functions for each term, along with their class, need not to be the same.

However, in the absence of any general theory, or particular knowledge about the functions, an em-

pirical approach is followed that suggests the same number of Gaussian basis functions (Verleysen

and Hlavackova, 1994). HenceLAb = LA = Lb andφi(t) = πi(t) where:

φi(t) = exp

{

−0.5

(∥t−ci∥
λi

)2
}

, (5.6)

with ci andλi ∈ ℜ are thei’th centre and width respectively (which controls the smoothness of

the function) and∥.∥ is the Euclidean norm. Having precomputed the basis function mapsφi(t) ∀
i ∈ {0,1,2, ⋅ ⋅ ⋅ ,LAb} and∀ t ∈ [t0, t f ], as shown in Table 5.1, the optimisation problem reduces to

calculating the weights of the basis functions, with:

LRBF = (D+1)×D× (LAb+1) , (5.7)

parameters. Typically the expected number of the RBF weights is much smaller than the initial

number of discrete time variables (i.e.LRBF≪ Ntotal), thus making the optimisation problem

smaller and more stable.
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T = [t0, t f ] t0 t1 ⋅ ⋅ ⋅ t f

�0 7→ 1 1 ⋅ ⋅ ⋅ 1

�1 7→ φ1(t0) φ1(t1) ⋅ ⋅ ⋅ φ1(t f )
...

...
...

. ..
...

�LAb 7→ φLAb(t0) φLAb(t1) ⋅ ⋅ ⋅ φLAb(t f )

Table 5.1: Example ofΦ(t) matrix, defined onT = [t0, t f ]. HereT is discretised (i.e.T = [t0, t0+
δt, t0+2δt, . . . , t0+Nδt = t f ]), whereN is the total number of discrete time units. Although the
basis functions are defined in continuous time and can be evaluated at any timeinstant, in practice
the entries ofΦ(t) matrix contain only the evaluations of the basis functions at the discrete time
instants of setT.

As in the original VGPA algorithm the parameters are determined using a scaledconjugate

gradient (SCG) optimisation algorithm, as detailed in Nabney (2002), to minimise theLagrangian

cost function, Eq. (5.5). To do that, the partial derivatives of the approximateLagrangian are

computed with respect to the weights of the approximating functions, as shownin Appendix B

(i.e.Ai andbi , ∀ i ∈ [0,1,2, . . . ,LAb]):

∂L̃

∂Ai
and

∂L̃

∂bi
. (5.8)

Once these weights have been determined, the pre-computed basis functions are used and with

simple matrix multiplications the approximated time-varying linear dynamical system as acontin-

uous function of time is retrieved. Schematically, in matrix notation, this is:

Ãt
reshape←

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1(t)

A2(t)
...

AD2(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1,0 A1,1 ⋅ ⋅ ⋅ A1,LAb

A2,0 A2,1 ⋅ ⋅ ⋅ A2,LAb

...
...

.. .
...

AD2,0 AD2,1 ⋅ ⋅ ⋅ AD2,LAb

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ0(t)

φ1(t)
...

φLAb(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

HereA j,i represents thej ’th component of theAi ’th weight. Effectively, theAi weights have been

reshaped in column vectors and packed all together in one matrix with dimensionsD2× (LAb+1).

For theb̃t a similar procedure is followed, only here things are simpler because thebi weights

are already vectors, so there is no need to reshape them. Hence that yields:

b̃t ←

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1(t)

b2(t)
...

bD(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1,0 b1,1 ⋅ ⋅ ⋅ b1,LAb

b2,0 b2,1 ⋅ ⋅ ⋅ b2,LAb

...
...

. . .
...

bD,0 bD,1 ⋅ ⋅ ⋅ bD,LAb

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ0(t)

φ1(t)
...

φLAb(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

whereb j,i represents thej ’th component of thebi ’th weight.
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System � Σ Nobs R

DW 1 0.8 2 0.04

L3D [10,28,2.6667] 4 10 2

L40D 8 5 10 1

Table 5.2: Summary of the experimental setup.

In addition to the above re-parametrisation, of the initial algorithm, a modified Gram-Schmidt

orthogonalisation is employed (Golub and van Loan, 1996), to improve numerical stability and

the speed of convergence. This is done on the pre-computed�i vectors, as shown in Table 5.1.

In practice this orthogonalisation dramatically reduces the number of iterationsrequired for the

algorithm to reach convergence. Here�i refers to thei’th basis function (row-vector) that contains

the pre-computed values for all t∈ [t0, t f ]. Hence�i ∈ℜ1×N, whereN = ∣t0− t f ∣/δt.

5.4 Results of state estimation

The experimental results, on both state and parameter estimation, will be presented in this section

and the following one. To test the stability and the convergence properties of the new RBF approx-

imation algorithm, the new approach is validated with three highly non-linear dynamical systems.

These are the univariate double well system (DW), the three dimensional Lorenz (L3D) system

and the forty dimensional Lorenz (L40D), (see Chapter 3).

Experimental setup

For the simulations here, a time window of ten units (t0 = 0, t f = 10) for the DW system is

considered (Fig. 5.2(a)), twenty (t0 = 0, t f = 20) for the L3D (Fig. 5.2(b)), and five (t0 = 0,

t f = 5) for the L40D (Fig. 5.2(c)). The original theoretical framework (seeChapter 4) addresses

continuous time sample paths, however when solving the problem on a digital computer, one has

at some point to discretise the equations. This is done with a relatively small time discretisation

step (e.g.δt = 0.01), which is identical for both the SDEs, see Eq. (4.1) and the ODEs, Eq.(4.12)

and Eq. (4.13). The discretisation scheme that was chosen for the SDEs isthe Euler-Maruyama,

and for the ODEs is the Euler method.

The true parameters, that generated the sample paths are summarised in Table 5.2. Notethat

in the multivariate systems the noise covariance matrixΣ and the noise on the observationsR are

diagonal matrices andNobs represents the number of available i.i.d. observationsper time unit(i.e.

observation density). These need to be relatively high in the chaotic systemsif the parameters are
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Figure 5.2: (a) Sample path of a double well potential system, used in the experiments, with two
(rather uncommon) transitions between the wells. (b) A typical trajectory of the L3D system. (c)
All forty dimensions of the L40D, for the time period [0-5], withθ = 8.

to be identified with any accuracy.

Finally, the basis functions that were used in all systems were Gaussian Eq.(5.6), with centres

ci chosen equally spaced within the time windows and widthsλi sufficiently large to permit overlap

of neighbouring basis functions (Haykin, 1999):

λi =
max(centre)−min(centre)

LAb
, (5.9)

whereLAb > 0, is the total number of centres.

Although there exists methods to optimise the locations of the centres, as well as the widths

of the basis functions (Benoudjit et al., 2002), a uniform distribution of thecentroids is suggested,

with fixed widths which is a sufficientlyclose to optimalsolution. In this work RBFs are not

applied in a traditional way, such as fitting a response function to a set of data (observations),

rather they are employed to create a basis function set in continuous time, resulting in a constraint

on the available solutions of the approximating functionsAt andbt .
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Results

Figure 5.3 compares the results obtained from the RBF approximation algorithm,on the DW

system, with basis function densityM = 401, to the outcomes of a Hybrid Monte Carlo (HMC)

sample from the posterior process, using the true values for the drift anddiffusion parameters,

which provides a reference solution to the smoothing problem. Note that although the variance

of the RBF approximation is slightly underestimated, the mean path matches the HMC results

rather well and the times of the transitions between the two wells are tracked correctly. The only

difference in the mean paths is located at the beginning of the time window. This isdue to the fact

that the RBF algorithm starts at a fixed point (i.e.m(0) = fixed), rather than optimised.

The variational approximation as employed here is likely to underestimate the variance of the

approximating process due to the expectation in the KL divergence being taken with respect to

the approximating distribution in Eq. (4.4). Empirically this is found to have a relatively minor

impact as long as the system is well observed, which keeps the true posterior process close to

Gaussian. Where the true posterior process is strongly non-Gaussian,and in particular where it is

multi-modal a more significant underestimation exists, as might be expected. Theresults shown

here are typical examples, where the systems have uni-modal posteriors.
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Figure 5.3: Comparison of the approximated marginal mean and variance (ofa single DW reali-
sation), between the “correct” HMC estimates (solid red lines) and the RBF variational algorithm
(dashed blue lines). The crosses indicate the noisy observations.

To provide a robust demonstration of the consistency of the results of the RBF approximation,

with respect to the original discretized VGPA, one hundred different realisations of the obser-

vation noise, from a single dataset, were used. Here the number of basis functions in the RBF

was increased to explore convergence of the RBF to the original VGPA. Summary statistics from

these experiments, on the DW system, concerning the convergence of the free energy obtained

1HereM denotes the density of the basis functions per time unit. HenceLAb = ∣t f − t0∣×M and in this example

LAb = 400.
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from the RBF approximation algorithm compared with the one from the original VGPA, shown

in Figure 5.4(a). The 25, 50 and 75 percentiles from these 100 realisations are plotted when the

system has converged to its minimum free energy. Is is apparent that with more than thirty five

basis functions per time unit (M = 35), the RBF algorithm reaches the same free energy values as

the original VGPA.

In addition to Figure 5.4(a), Figure 5.4(b) provides a similar summary, plotting the difference

between the free energies of the RBF and the VGPA, as a function of basisfunctions density,

clearly showing that for this system an RBF with 40 basis functions per time unitis sufficient to

capture the variation with no detectable loss of information.

The new RBF approximation algorithm is extremely stable, when estimating the state of the

systems concerned, and converges to the original VGPA, given a “sufficient” number of basis

functions. This is also apparent in comparing the KL[p∥q] divergence (Kullback and Leibler,

1951), between the approximationsq (VGPA, RBF) and the “true” (HMC) posteriorp, as shown in

Figure 5.4(c), on a typical realisation of the DW system. This KL divergence, which is integrated

over the whole time window, is useful to measure the goodness of the RBF approximation which

is clearly comparable to the original VGPA. The non-zero value of this divergence is related to the

approximation error induced by the Gaussian process approximation to the non-Gaussian posterior

distribution.

To address the sensitivity of the RBF approximation to the widths of the Gaussianbasis func-

tions and the effect of this on the convergence of the free energy a comparison of the original

VGPA, against the RBF algorithm took place, for fixed basis function density equal to forty per

time unitM = 40, while varying the widthλ of the basis functions. This was again repeated for

one hundred different realisations of the observation noise (of the DW system) and the summary

results are shown in Figure 5.5(b). It is apparent that the performanceof the RBF algorithm is

very stable for a wide range ofλi values (note the logarithmic scale on the x-axis). It is possible

that this is an effect of the high number of equidistant basis functions that was chosen and which

provide good coverage in the time domain. Repeating the same experiment with fewer (M = 10,

Fig. 5.5(a)) basis functions shows very similar behaviour, although the RBF approximation is un-

able to match the original VGPA due to having insufficient basis functions. Again, the stable

region is wide and flat and only when the value of the width is pushed to the extremes does the

algorithm produce instabilities.

Figures 5.6(a), 5.6(b) and 5.6(c) compare the results obtained from the RBF approximation

algorithm, on a twenty time unit inference windowT = [0,20] of the L3D system for fixed basis

function density,M = 40, against the “correct” posterior process obtained from a Hybrid Monte

Carlo (HMC) method, on a single realization, given the true parameter setting,as shown on Ta-
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Figure 5.4: (a) Comparison of the log free energy, at convergence, between the RBF algorithm
(squares, dashed lines) and the original VGPA (solid line, shaded area) on the DW system. The plot
shows the 25, 50 and 75 percentiles (from 100 realisations) of the free energy. (b) The mean value
(black squares) and the variance (red dashed vertical lines) of the difference of the free energy
between the RBF approximation and the original VGPA, obtained from one hundred realisations
of the observations noise. (c) Shows a similar plot (for a single realisation)for the integral of
the KL[p∥q] divergence, between the “true” (HMC) and approximate VGPA (dashedline, shaded
area) and RBF (squares, dashed lines) posteriors, over the whole time window [t0, t f ]. All plots
are presented as functions of basis function density.

ble 5.2. It is worth noticing that in this case obtaining results using HMC methods was non-trivial

and required careful tuning and convergence assessment. More details about sampling with the

HMC algorithm are given in Chapter 7.
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Figure 5.5: Comparison of the log free energy, at convergence, between the RBF algorithm
(squares, dashed lines) and the original VGPA (solid line, shaded area) on the DW system as a
function of the basis function width,λ. The plot shows the 25, 50 and 75 percentiles (from 100
realisations) of the free energy.Left panel: The value of the basis function density is fixed to
ten per time unit (M = 10), whereas in theRight panel: the basis function density is increased to
forty (M = 40) per time unit. For both experiments the parameters�, Σ andR were identical and
kept fixed to their true values. Note also the logarithmic scale on the -x- axis.

Similarly to the DW case, the marginal mean paths on each dimension of the system match

the HMC results and the variance of the RBF approximation is again underestimated. However,

after having a closer look to the experiments performed it was realised that the underestimation of

the variance in higher dimensional systems is not the general case (as it willbe seen in Chapter

6). Here this result is explained by the fact that the smoothing window for the HMC results was

originally fifty time units, while the RBF approximation algorithm was performed onlyin the first

twenty time units.

To provide robust results illustrating the convergence of the RBF approximation to the original

discretized VGPA on this multivariate system thirty different realisations of theobservation noise,

from a single dataset, were used. Summary statistics from these experiments,on the L3D system,

concerning the convergence of the free energy obtained from the RBFapproximation algorithm

compared with the one from the original VGPA, is shown in Figure 5.7. This again shows that the

RBF version is relatively insensitive to the number of basis functions per time unit, above some

threshold, and seems to actually produce slightly better estimates in terms of the free energy.

Finally, results are presented for the stochastic Lorenz 40D system. Figure 5.8(a) shows the

approximated means for all forty dimensions of the system for a relatively short time window. To

obtain these results forty basis functions per time unit were used. Figure 5.8(b) shows the marginal

variances for each dimension and Figure 5.8(c) plots the squared difference of the approximated

means with the true sample path (see Figure 5.2(c)) showing that for the most part a good estimate

of the mean state is produced.
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Figure 5.6: A comparison of the approximated marginal means and variances(of a single re-
alisation of the L3D system), between the “correct” HMC estimates (dashed red lines) and the
variational RBF (M = 40) algorithm (dotted blue lines). The results are plotted separately on each
dimension. The noisy observations have been omitted for better illustration of the marginal means.
The zoomed sub-plots highlight the underestimation of the variance.

5.5 Results of parameter estimation

This section presents the results for the estimation of (hyper-) parameters of the systems consid-

ered, following the same experimental setup as in Section 5.4. The original VGPA approximation

can be used to compute a bound on the marginal likelihood Eq. (4.6) and thus compute estimates

of (hyper-) parameters, including the system noise and the drift parameters (see Section 4.5). Once
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plot shows the 25, 50 and 75 percentiles (from 30 different realisations) of the free energy. The
log free energy is plotted as a function of basis function densities.
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Figure 5.8: Fig. (a) shows all the approximated mean paths (of a single realisation of the L40D
system), obtained from the variational RBF (M = 40) algorithm. In Fig. (b), the marginal variance
around each mean path. Fig. (c) illustrates the squared difference of theapproximated means with
the true sample path (see Fig. 5.2(c)).

an upper bound has been achieved, one can attempt to estimate the (hyper-) parameters by com-

puting the derivatives of theLagrangian (see Eq. 4.14), with respect to the drift and diffusion

parameters:
∂L

∂�
and

∂L

∂Σ
, (5.10)

and then employ a conjugate gradient optimisation algorithm (Nabney, 2002).

In the RBF version this is also possible and empirical results show that, at least for the univari-
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ate case, this is faster and more robust compared to the original VGPA. Theprofile log approximate

marginal likelihood, for the DW system is shown in Figures 5.9(a) and 5.9(b). Even with a rela-

tive small basis function density, theσ2 andθ minima are very close to those determined by the

VGPA. Forσ2 around thirty basis functions (M = 30), are needed to reach the same minimum. For

the drift (θ) parameter the minimum is almost identical using only ten basis functions (M = 10)

per time unit. Thus if the primary interest is in the drift parameters one can employa relatively

compact RBF approximation, which provides speed and robustness benefits and still obtain good

estimates for the parameters.
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Figure 5.9:DW system: (a) Profile marginal log likelihood for the system noise coefficientσ2

keeping the drift parameterθ fixed to the true one. (b) as (a) but for the drift parameterθ keeping
σ2 fixed to its true value. Both simulations run forM = [10,20,30,40], basis functions per time
unit and compared with the profiles from the VGPA on a typical realisation of the observations.
The dotted vertical lines represent the true values of the parameters that generated the data.

The above conclusions are supported by further experiments, on one hundred different realisa-

tions of the observation noise on the same dataset. Figures 5.10(a) and 5.10(b), exhibit consistency

in the estimates of the maximum marginal likelihood parameters both in value and variability. In

addition, the biases that exist in both estimates are shown more clearly and areconsistent with the

relatively sparse noisy measurements. For the drift parameter Fig. 5.10(b), the bias is relatively

small, whereas for the system noise Fig. 5.10(a) it is larger. This could be explained by the fact

that in the example considered here there exist two transitions between the twostable states, which

for a short time window is rather unlikely, and thus suggests a higher noise variance than is really

present.

Apart from the conditional estimation results, a series of joint estimation of the parameters

was also performed. These start from nine different points on a two dimensional grid, spanning

the effective parameter space. Figure 5.11(a) shows a contour plot representing the logarithm of

the free energy, and the nine different trajectories of the joint parameterestimation processes. This

shows robust behaviour with all trajectories converging to a good approximation, close to the true

parameter values, regardless of initialisation.
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Figure 5.10:DW system: (a) Conditional estimation of the system noise coefficientσ2 keepingθ
to its true value. The comparison is between the results from the RBF algorithm (squares, dashed
vertical lines) and the original VGPA (horizontal dashed line, shaded area). The figure shows the
25, 50 and 75 percentiles of the estimated values (from 100 different realisations). (b) as (a) but
for the drift parameterθ keepingσ2 fixed to its true value. Both plots are presented as functions
of increasing basis function density.
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Figure 5.11:DW system: Contour plot (a) presents the trajectories of nine joint estimations of
bothσ2 andθ, from different starting points. Results obtained withM = 40 basis function density.
(b) shows the log energy profile, in the parameter space.

Results on parameter inference for the Lorenz 3D system are shown in Figure 5.12. All sub-

figures show clearly that the RBF and original VGPA produce consistentresults. The system

noise parameters are well identified for thext variable Fig. 5.12(b), but not so well identified for

the other two variablesyt andzt , Figures 5.12(d) and 5.12(f) respectively. This is related to the

dynamics of the system since theyt andzt components both have more complex interaction terms

in their evolution equations. Estimating system noise parameters from sparse discrete time, noisy

observations remains a significant practical challenge for all parameter inference methods.

Results for drift parameter inference for the Lorenz 3D system show that there is a bias in the

estimates for theσ andβ parameters, Figures 5.12(a) and 5.12(e) respectively. The source of this

bias is not clear, and further work is necessary to investigate whether thisis related to systematic

error in the variational method, or a more general problem for likelihood based inference in such

chaotic dynamical systems. Theρ parameter, as shown in Fig. 5.12(c), is well estimated. It
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Figure 5.12:L3D system:Profile approximate marginal log likelihoods for the drift and diffusion
parameters� andΣ (diagonal elements). Each profile is obtained by keeping all the other param-
eters fixed to their true values. Left column presents the profiles for the drift σ (a),ρ (c) andβ (e),
while the right column for the system noise variance on each dimensionσ2

x (b), σ2
y (d) andσ2

z (f).
All simulations run withM = 40, basis functions per time unit and are compared with the profiles
from the VGPA on a typical realisation of the observations. The dotted vertical lines represent the
true values of the parameters that generated the data.

should be stressed that obtaining such profile plots is computationally intensive since it requires

minimisation of the free energy for relative long time windows (20 time units for these plots) at a

range of parameter settings.

The reduction in the complexity of the algorithm, does not produce a similar reduction in

computational time. Figure 5.13(a) compares the log number of iterations of the RBF algorithm

needed to reach convergence with the number of iterations from the VGPA.These results are
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Figure 5.13: (a) Comparison of the log number of iterations to reach convergence, between the
RBF algorithm (diamonds, dashed vertical lines) and the original VGPA (solid horizontal line,
shaded area) on the DW system. The plot shows the 25, 50 and 75 percentiles (from 100 re-
alisations). (b) same as (a), but for the Lorenz 3D system from 30 different realizations of the
observation noise. Both plots are presented as functions of RBF density.

summaries from 100 different realizations (of the observation noise on a single dataset) of the DW

system and one can clearly see that the VGPA, while optimising a larger numberof parameters,

converges in fewer iterations. Figure 5.13(b) presents similar results butfrom 30 realisations of

the Lorenz 3D system, where the two algorithms are more comparable.
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Figure 5.14:Left panel: Profile approximate marginal log likelihood, obtained with the VGPA
algorithm, for the force (drift) parameter, from a single realisation of the L40D system, keeping
the system noise covariance matrixΣ, to its true value.Central panel: Same profile but obtained
from the RBF approximation with basis function density twenty per time unit.Right panel: Same
as central, but with increased basis function density to forty per time unit. In all panels the vertical
dashed line represents the true value of the forcing parameter.

Results of parameter inference for the 40 dimensional Lorenz system areshown in Figure 5.14.

Here the results show consistency for the RBF approximation and that this is relatively insensitive

to RBF density. In all cases the minimum for the profiles is well defined and close to the true value

used to generate the trajectory and thus observations. These new resultsshow that both the VGPA

71



Chapter 5 RADIAL BASIS FUNCTION EXTENSION

and the variational RBF approximation can be applied to relatively high dimensional dynamical

systems and can provide reliable estimates of (hyper-) parameters in these dynamical systems.

5.6 Discussion

This chapter presented a new radial basis function approximation that extends the variational Gaus-

sian process approximation (VGPA) algorithm for Bayesian inference for diffusion processes. The

new method, is validated by numerical experiments on three non-linear systems. Results show that

the new algorithm converges to the original VGPA with a relatively small numberof basis func-

tions per time unit. However, it was not possible to provide a principled way to determine this

value, and thus theoretically examine the sensitivity of the RBF approximation to this modelling

choice.

Different systemssuggesteddifferent optimum values, but in most of the cases less than 40%

of the number of parameters required in the original VGPA had to be optimised.This makes the

algorithm more stable, however the computation benefits are not as significant as had been hoped,

which is related to the more complex (non-linear) optimisation problem when usingweights on

RBFs as the control parameters in the variational optimisation process.

The algorithms were extended to higher dimensional systems and shown to provide good state

and parameter estimates even in a forty dimensional dynamical system. In obtaining these results

several numerical challenges related to the sensitivity of the original VGPAto good initialisation

were encountered. In the 1D case the RBF version was extremely robustand could be initialised

almost arbitrarily, however in the higher dimensional cases some care was required to initialise all

the algorithms.

Although the new algorithm is stable with fewer parameters, that was not reflected in a similar

reduction in the computational time. This may be related to the fact that the class ofbasis functions

that was chosen (i.e. Gaussian) is not suitable to approximate the variationalparametersAt and

bt .

Another argument is that the RBF algorithm still works in a discrete time framework, albeit

with an alternative parametrisation. In the original VGPA the control parameters are discretized,

with a relatively small time step for numerical stability (e.g.δt = 0.01). This discretisation is also

inherited in the implementation of the RBF version of the algorithm and even thoughall the time

varying basis function maps can be pre-computed off-line, there are still bounds by the limitations

of each discretisation scheme.

The experiments have also highlighted issues around initialisation and the computation of the

expectations (see Appendix A), required in the free energy. At present two options have been
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employed: a (universal) numerical approximate approach based on the unscented transforma-

tion (Julier et al., 2000) and the (system dependent) exact analytic calculation of the required

moments (Appendix D). Neither is particularly satisfactory – the unscented transformation re-

quires careful tuning to ensure stability and the analytic derivation is time consuming, especially

with high dimensional systems and potentially error prone in implementation, although it can be

partially automated using symbolic manipulation.
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6.1 Foreword

The current chapter proposes another, alternative, re-parametrisation to the previously described

VGPA algorithm (Chapter 4), in terms of polynomial approximations. The lineardrift gL(xt) in

Eq. (4.7) is defined in terms ofAt andbt . These functions, upon discretisation, result in a finite

set of discrete time variables that need to be inferred during the optimisation procedure.

In Chapter 5, these time varying functions were approximated with basis function expansions

with support over the whole time domain (i.e.T = [t0, t f ]). This allowed a reduction in the total

number of control variables in the optimisation step, as well as some prior control over the space of

functions admitted as solutions. However, theAt andbt variational parameters are by construction

discontinuousat observation times. Thus a large number of basis functions was requiredto capture

theroughnessat observation times (see Fig. 6.2).

In the same spirit, the solution proposed here to overcome this issue is to definethe approxi-

mations only between observation times such as,[t0, tk1],(tk1, tk2], . . . ,(tkM, t f ]. This way a function

approximation can be defined on each sub-interval (without overlap) and further reduces the total

number of parameters to be optimised. Although simple in concept, this approachis shown to be

very robust and able to recover good estimates of the states and (hyper-) parameters on the systems

tested.

6.1.1 Chapter outline

The chapter begins with Section 6.2, where the new suggested polynomial extension is explained

in detail for the general multivariate case. The new approach is tested on artificial data gener-

ated from a variety of systems, as described in Chapter 3. The experimental setup is given in

Section 6.3.1, followed by results on state and parameter estimation in Sections 6.3.2 and 6.3.3,

respectively. The Lorenz ’96 system, due to its relatively higher dimensionality, comparing to the

other systems tested here, is treated as a special case in Section 6.3.4. The chapter ends with a

discussion.

6.2 Polynomial approximation of the variational parameter s

The variational parametersAt andbt are represented by a finite set of discrete time variables. The

size of that set scales proportionally to the length of the time window of inference, the dimension-

ality of the data (state vectorxt) and the time discretisation step, as defined in Eq. (5.3).

SubstitutingAt andbt with polynomials, defined locally on each sub-interval, the following
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expressions are obtained:

Ã j
t =A

j
0+A

j
1× t + ⋅ ⋅ ⋅+A j

Mo× tMo , (6.1)

b̃ j
t = b

j
0+b

j
1× t + ⋅ ⋅ ⋅+b j

Mo× tMo , (6.2)

whereÃ j
t and b̃ j

t are the approximating functions defined on thej ’th sub-interval,A j
i ∈ ℜD×D

andb j
i ∈ℜD are thei’th order coefficients of thej ’th polynomial andi ∈ {0,1, . . . ,Mo}, with Mo

representing the order of the polynomial.

It is important to distinguish from the case where the polynomials are fitted between the actual

measurable values(e.g. interpolation with cubic splines). Here they are rather fitted between

observation times. Note also that the order of the polynomials betweenÃ j
t andb̃ j

t , or even between

the j ’th polynomial of each approximation, need not to be the same; neverthelessin the absence

of any additional information about the functions, or lack of any theoretical guidance, a practical

approach is taken to suggest the same order of polynomials, under the condition that they provide

sufficient flexibility to capture thediscontinuityof the variational parameters at observation times,

as shown in Figure 6.1.

Figure 6.1: An example of thelocal polynomial approximation, on a univariate system. The
vertical dashed lines represent the times the observations occur and each polynomial is defined
locally between two observation times. The filled diamond and circles indicate closed sets, while
the clear diamonds define open sets. Note that only the first polynomial is defined in closed set
from both sides, to avoid overlapping.

The new expression for theLagrangian (see Equation 4.14), for thej ’th sub-interval thus

becomes:

L̃ j = F̃ j(q(xt),�,Σ)−
∫

t∈T j

(

�⊤t (ṁt + Ã j
t mt − b̃ j

t )+ tr{Ψt(Ṡt + Ã j
t St +StÃ

j⊤
t −Σ)}

)

dt ,

(6.3)

whereT j ⊂ T, or T = {T1∪ ⋅ ⋅ ⋅ ∪T j ∪ ⋅ ⋅ ⋅ ∪TJ}, with J ≥ 1, being the total number of disjoint

sub-sets.
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The expressions for the polynomial approximations, Eq. (6.1 and 6.2), can be presented more

compactly using matrix notation, which simplifies the presentation and is used fromthis point

forward:

Ã j
t =A

j ×p j(t) and b̃ j
t =B

j ×p j(t) . (6.4)

Schematically these matrix - vector products can be seen as:

Ã j
t

reshape to←

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A j
1(t)

A j
2(t)
...

A j
D2(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A j
1,0 A j

1,1 ⋅ ⋅ ⋅ A j
1,Mo

A j
2,0 A j

2,1 ⋅ ⋅ ⋅ A j
2,Mo

...
...

.. .
...

A j
D2,0 A j

D2,1 ⋅ ⋅ ⋅ A j
D2,Mo

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

A j

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

t
...

tMo

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

p j (t)

.

Here A j
r,i represents ther ’th (scalar) component of theA j

i coefficient in the j ’th sub-interval.

Effectively, theA j
i weights have been reshaped in column vectors and packed together in one

matrix of sizeD2×(Mo+1), (similar to the RBF case). For theb̃ j
t a similar procedure is followed,

only here things are simpler because theb j
i coefficients are already vectors, so there is no need to

reshape them. That yields:

b̃ j
t ←

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b j
1(t)

b j
2(t)
...

b j
D(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b j
1,0 b j

1,1 ⋅ ⋅ ⋅ b j
1,Mo

b j
2,0 b j

2,1 ⋅ ⋅ ⋅ b j
2,Mo

...
...

. ..
...

b j
D,0 b j

D,1 ⋅ ⋅ ⋅ b j
D,Mo

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

B j

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

t
...

tMo

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

p j (t)

,

whereb j
r,i represents ther ’th (scalar) component of theb j

i (vector) coefficient.

Equation (6.4) shows that the vectorsp j(t) can be precomputed off-line for all predefined

discrete time domains, reducing the computational complexity of estimating the coefficients of the

polynomials.p j(t) is precomputed and stored column-wise in a matrix, as shown on Table 6.1.

Thus the reconstruction of the approximate variational parametersÃ j
t andb̃ j

t , for their whole time

domain, can be done by a simple matrix - matrix multiplication, such asÃ j
t =A

j ×Π
j(t), where

the matrixΠ j(t), is defined as on Table 6.1.

The number of coefficients for both variational parametersÃt andb̃t is:

Lpoly = (D+1)×D× (Mo+1)×J , (6.5)

variables, whereD is the system dimension,Mo is the order of the polynomials andJ is the total

number of disjoint sub-intervals (i.e. the number of observation times increased by one). Usually,

it is anticipated thatLpoly≪ Ntotal, thus making the optimisation problem smaller.
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Π
j(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 ⋅ ⋅ ⋅ 1

tk+δt tk+2δt tk+3δt ⋅ ⋅ ⋅ tk+1

...
...

...
. . .

...

tMo
k+δt tMo

k+2δt tMo
k+3δt ⋅ ⋅ ⋅ tMo

k+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Table 6.1: Example ofΠ j(t) matrix, defined onT j = (tk, tk+1]. Note that because the time interval
is discretised and defined on an open set from the left side, the first point of evaluation istk+δt ,
instead oftk.

The original VGPA algorithm, used a scaled conjugate gradient (SCG) algorithm (Nabney,

2002), to minimize Eq. (4.14) with respect to the variational parametersAt andbt . The same

procedure is used here computing the gradients of the approximate Lagrangian Eq. (6.3), with

respect to the coefficientsA j andB j , of the re-parametrized variational parameters, for each sub-

interval (details can be found in Appendix C). As in the RBF extension (Chapter 5), to further

improve computational efficiency and stability a modified Gram-Schmidt orthogonalisation is ap-

plied (Golub and van Loan, 1996), to the rows of the pre-computedΠ
j(t) matrices, as shown in

Table 6.1, on each sub-interval separately. In practice this orthogonalisation dramatically reduces

the number of iterations required for the algorithm to reach convergence.

Figure 6.2, demonstrates how the new proposed methodology better approximates the linear

and offset parameters (At andbt), of the original VGPA (Figures 6.2(a) and 6.2(b)), compared to

the RBF extension as presented in the previous chapter. The large numberof basis functions that

are used for this example (forty per time unit) makes the approximations to worsen causing fluc-

tuations close to the observation times (Figures 6.2(c) and 6.2(d)). The newpolynomial scheme

suggested here, thanks to the locality of the approximation (there is no overlapping between the

polynomials), achieves a better fit of the original parameters (Figures 6.2(e) and 6.2(f)), produc-

ing smoother results. Notice that although the RBF extension uses forty basisfunction per time

unit, the new polynomial extension, with 9’th order polynomials can approximatethe variational

parameters better close to observation times, compared to the original VGPA results.

The proposed solution has an additional advantage over the original VGPA algorithm in that

when solving the ODEs for the marginal means and covariances of the approximate Gaussian

process Eq. (4.12 and 4.13) one can apply high order solvers, such as Runge-Kutta 2nd/4th order

schemes by using theexactmid-points ofÃt andb̃t , computed through the polynomial functions,

i.e. evaluating

Ã j(t +0.5δt) =A j ×p j(t +0.5δt) and b̃ j(t +0.5δt) =B j ×p j(t +0.5δt),

rather than approximating them. In Figure 6.3, when the time discretisation step is relatively small
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(e) Ã(t) from LP extension

0 1 2 3 4 5 6 7 8
−40

−30

−20

−10

0

10

20

30

40

t

b(
t)

(f) b̃(t) from LP extension

Figure 6.2: Left column presents the variational linear parameterAt , from a DW simulation with
one observation per time unit on aT = [0,8] time window, for the original VGPA algorithm (a)
and the new RBF (c) and polynomial (e) extensions. Right column presentssimilar results for the
bias parameterbt .

(e.g.δt = 0.001), both the VGPA and LP1 provide similar profile free energy results. The profiles

show the value of the free energy at algorithm convergence as a function of the drift parameter

value, for a fixed diffusion variance and are used later to demonstrate parameter estimation where

they are explained in more detail. When the time step increases the new LP approximation remains

smoother thus making the minimum clearer.

1LP from here onwards is a shorthand notation for the new local polynomial extension.
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Figure 6.3: Marginal profiles of the variational free energy, at convergence, as a function of the
drift parameterθ, given the system noiseσ2. The continuous line represents the profile from the
LP approximation of second order (i.e.Mo= 2), while the dashed line represents the same profile
but with the original VGPA framework. The results are from a single realisation of the OU process
(see Chapter 3) and both algorithms use the Runge-Kutta 2nd order integration method. The time
discretisation step ranges fromδt = 0.001 (top left), toδt = 0.03 (bottom right).

6.3 Numerical simulations

Before proceeding in exploring the convergence properties of the newLP algorithm, compared to

the original VGPA framework, this section establishes the experimental setupthat is used in the

following sections. The systems considered here are the one-dimensionalOU Fig. 6.4(a) and DW

Fig. 6.4(b), and the three-dimensional L3D (as reviewed in Chapter 3).

6.3.1 Experimental setup

In the numerical experiments a fixed inference window of twenty time units (i.e.T = [0,20]) was

considered for all systems and the time discretisation was set toδt = 0.01 to ensure numerical

stability. Table 6.2 summarizes thetrue parameter values, that generated the sample paths for the

following simulations.

In a similar strategy to Apte et al. (2007), the discretisation is applied only in the posterior

approximation; the inference problem is derived in an infinite dimensional framework (continuous

time sample paths), as shown in Chapter 4. The Euler-Maruyama representation of the prior

process (Eq. 4.1), leads to the following discrete time analogue:

xk+1 = xk+ f(t,xk;�) δt +
√
Σδt �k , (6.6)
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Figure 6.4: Typical examples of OU (a) and DW (b) sample paths. These sample paths will be
used as the histories in the experimental simulations, that produced the observations.
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Figure 6.5: (a) A typical realisation of the stochastic Lorenz ’63 system astime series in each
dimension. (b) The same data but inxt − zt plane where the effect of the random fluctuations is
more clear.

where�k∼N (0,I) and the positiveinfinitesimal dtin Eq. (4.1), has now been replaced by a pos-

itive finitenumberδt. Moreover, this expression can be used to provide approximate sample paths

(in terms of discretising a stochastic differential equation) from the prior process (Higham, 2001;

Kloeden and Platen, 1999). This first order approximation imposes a suitably small discretisation

stepδt, if good accuracy is to be achieved.

6.3.2 Results of state estimation

The presentation of the experimental simulations begins with results for the OU process. Fig. 6.6,

shows the results from the LP approximation of the VGPA algorithm, of polynomial orderMo= 5.

For this example the observation density of 2 observations per time unit (hence 40 in the whole

time domainT = [0,20]), with Mo= 5 andJ = 41, produces a set ofLpoly = 492 coefficients to

be inferred, compared toNtotal = 4000 in the original VGPA framework. This is roughly 12.3%

of the initial optimisation problem. For this system since the initial statex0 = 0, is fixed in this

simulations, as mentioned earlier, one can use the induced non-stationary covariance kernel func-

tion Eq. (3.7) and compute the exact posterior process. Comparing the results obtained from the
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System t0 t f δt � Σ Nobs R

OU 0 20 0.01 2 1 2 0.04

DW 0 20 0.01 1 0.8 2 0.04

L3D 0 20 0.01 [10,28,2.6667] 6 10 2

Table 6.2: Experimental setup that generated the data (trajectories and observations). Initial times
(t0) and final times (t f ) define a fixed time window of inference, whilstδt is the time discretisation
step. � are the parameters related to the drift function, whileΣ andR represent the noise (co)-
variances of the stochastic process and the discrete observations respectively. In the multivariate
system these covariance matrices are diagonal.Nobs represents the number of i.i.d. observations
per time unit(i.e. observation density), which are taken at equidistant time instants.

LP approximation with the results from a GP regression smoother with the OU kernel the match

is excellent, as expected for a linear system, where the approximation is theoretically optimal (in

the limiting case asδt→0).
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Figure 6.6: Marginal values of the means (solid line) and variances (shaded area) obtained by the
LP approximation of 5’th order on a single realisation of the OU system. The results from the GP
regression, on the same observation set, are visually indistinguishable andare omitted. The circles
indicate noisy observations.

To provide a robust demonstration of the consistency of the results of the LP approximation,

with respect to the original discretized VGPA, fifty different realisations of the observation noise,

from a single trajectory, were used. The order of the polynomials was increased to explore con-

vergence of the LP to the original VGPA. Summary statistics from these experiments, on the OU

system, concerning the convergence of the free energy obtained fromthe LP approximation al-

gorithm compared with the one from the original VGPA is shown in Figure 6.7(a). The median,

the 25’th and 75’th percentiles are plotted in boxplots, while the extended vertical dashed lines

indicate the 5’th and 95’th percentiles, from these 50 realisations, when thesystem has converged

to its free energy minimum. For this example, with only second order polynomials (i.e. Mo= 2),

the LP algorithm reaches the same free energy values as the original VGPA.

Figure 6.8(a) compares the results obtained from the LP approximation with 5’th order polyno-
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Figure 6.7: (a) The median and the 25’th to 75’th percentiles in boxplots of thevariational free
energy, from fifty realisations of the observation noise, as a function ofthe increasing order of
polynomialsMo, keeping the drift and diffusion parameters fixed to their true values. Extended
vertical dashed lines indicate the 5’th and 95’th percentiles. The horizontal dashed (blue) line
represents the 50’th percentile of the free energy obtained from the original VGPA on the same
50 realisations and the shaded area encloses the 25’th to 75’th percentiles. (b) Summaries from
the same experiment concerning the number of iterations both algorithms needed to converge to
optimality. Again, the horizontal lines (and shaded area) represent results obtained for the original
VGPA, while boxplot results from the LP approximation, as in (a).

mials, on a single realisation of the DW system, to the outcomes of a Hybrid Monte Carlo (HMC)1

sample from the posterior process, using the true values for the drift anddiffusion parameters. The

HMC solution is assumed here to provide areference solutionto the smoothing problem. The set-

ting, for the DW example, is 25,000 iterations of which the first 5,000 are considered asburn-in

and discarded. Each iteration generates 80 posterior sample paths of the system with artificial

time δτ = 0.01, and the last one is considered as the candidate sample path. In total 2,000,000

sample paths are generated which are sampled uniformly to produce only 20,000 samples from

which to compute the marginal mean and variance as shown in Figure 6.8(a). The convergence

results of this simulation are shown in Figure 6.8(b). Even though there existrecently proposed

MC sampling algorithms, such as thegeneralised HMCas suggest by Alexander et al. (2005)

which speed up the convergence of the Markov chain, here a rather classical hybrid Monte Carlo

is implemented, as was first introduced by Duane et al. (1987).

Although the variance of the LP approximation is slightly underestimated, the meanpath

matches the HMC results and the time of the transition between the two wells is trackedaccu-

rately. The variational approximation as shown in Chapter 4 is likely to underestimate the variance

of the approximating process (Minka, 2005) as is often the case when the expectation in the KL

divergence is taken with respect to the approximating distribution2 in Eq. (4.4).

Figures 6.9(a) and 6.9(b), present results comparable to Figures 6.7(a) and 6.7(b), but for

the DW system. Again 50 different realisations of the observation noise from a single trajectory

1The HMC algorithm is reviewed briefly in Section 7.2.3.
2That is KL[qt∥pt ] instead of computing KL[pt∥qt ], wherept is the true posterior whileqt is the approximate one.
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Figure 6.8: (a) Comparison of the approximate marginal mean and variance (of a single DW
realisation), between the “correct” HMC posterior estimates (solid green lines and light shaded
area) and the LP approximation, of 5’th order, (dashed blue lines and dark shaded area). The
circles indicate noisy observations. (b) Trace of the potential energy (horizontal axis is in log-
space), of the Hamiltonian,in the HMC posterior sampling. The vertical dashedline, indicates the
end of the burn in period and the beginning of the posterior sampling.

were generated and both LP approximation and VGPA algorithms were applied, given the true

parameter values for the drift and diffusion coefficients. The summaries from these runs show the

consistency of the LP approximation, when applied to non-linear systems. The algorithm exhibits

stability and slightly outperforms the original VGPA framework, in terms of minimizingthe free

energy, although this has a very minor impact in terms of solving the ODEs (Eq.4.12, 4.13) to

produce the marginal means and variances as shown in Figure 6.8(a).
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Figure 6.9: (a) Similar to Fig. 6.7(a), but from fifty different realizations of the observation noise
of the DW system. (b) Again, similar to Fig. 6.7(b), but for the DW system.

However, when the LP approximation is applied one must be aware that the complexity of

the algorithm (i.e. numbers of degrees of freedom), scales not only with theorder of the imposed

polynomial, but also with the frequency of the measured values (i.e. observation density) as shown

in Eq. (6.5). Thus, to address the sensitivity of the LP approximation, as both these quantities vary,

the algorithm was tested for 1≤ Nobs≤ 10 and 1≤ Mo≤ 10, on both OU and DW systems as

shown in Figures 6.10(a) and 6.10(b), respectively. At each point onthe grid, the result from

thirty different realisations of the observation noise were averaged andpresented. The behaviour
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of the LP approximation is similar in both systems tested, and confirms the initial beliefthat

when a system is very frequently observed, one can apply even a linearpolynomial approximation

(Mo= 1), between observation times to approximate the variational parameters.
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Figure 6.10: (a) The log average free energy, at convergence, from thirty different realisations
of the observation noise, of a single OU trajectory, as a function of both observation density and
order of polynomials (i.e.log(F(Nobs,Mo))). Figure (b), repeats the same experiment but for the
DW system.

To provide a more complete assessment of how this new LP approximation approach to the

VGPA algorithm scales with higher dimensions the same experiments were repeated on a multi-

variate system, namely the Lorenz ’63 (L3D). Figures 6.11(a) and 6.11(b), show the approximated

mean paths obtained with a 3’rd order LP algorithm, against the posterior meanpaths computed

using HMC, inxyandxzplanes respectively, from a single realisation of the stochastic L3D shown

in Figure 6.5(a). The observation density for this example was relatively high (Nobs= 10, per time

unit), hence it was possible to relax the order of the polynomials toMo= 3.

In this example, unlike the previous case of the DW, the LP approximation overestimates the

marginal variance (Figure 6.12(b)) compared with the estimates obtained by using HMC. How-

ever, the same effect is also observed when applying the original VGPA framework, hence this is

not an artefact of the polynomial approximation but rather of the variational framework.

The tuning of the HMC sampling scheme was similar to the one used to obtain the posterior

estimates for the DW system, only in this case a smaller artificial time step was necessary to

correctly sample the posterior process. In total 25,000 iterations of the HMC algorithm were

used, with the first 5,000 consideredburn-in. Each iteration integrated the artificial Hamiltonian

dynamics (Eq. 7.14) for 50 iterations, where only the last one was the candidate sample path. The

artificial time step wasδτ= 0.004. Sampling from high dimensional distributions with the HMC is

not a trivial task. Continuous timesample paths, which when discretised result in a large number

of random variables that need to be jointly sampled at each iteration is challenging. For the L3D

system considered here, the dimensionality of the discretised sample path isNrv = 6003 (i.e. one

needs to sample jointlyNrv random variables at each iteration). The trace of the potential energy
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Figure 6.11: The marginal means, obtained from the LP approximation and theHMC sampling in
xy (a) andxz (b) planes respectively, on a single realisation of the L3D (see Fig. 6.5(b)). In both
plots, the dots (black) are the results from the LP approximation (of 3’rd order), while the squares
(red) are results from HMC. Crosses (blue) indicate the noisy observations. TheE[⋅] notation that
appears in the figures axis representsexpectedvalue.

of the Hamiltonian (for the L3D example), is presented in Fig. 6.12(a).
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Figure 6.12: (a) Trace of the potential energy of the Hamiltonian in the HMC posterior sampling
of the L3D example. The vertical dashed line, indicates the end of the burn inperiod and the
beginning of the posterior sampling. Notice the logarithmic scale on the horizontal axis. (b)
The ratios, in each dimension of the L3D, between the LP approximate variance to the variance
obtained by the HMC sampling (i.e.var[LP]

var[HMC] ), as functions of time. The overestimation from the
LP approximation is apparent in all three dimensions.
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The performance of the new polynomial framework scales well for this multivariate system.

As shown in Figures 6.13(a) and 6.13(b), when comparing the minimisation of thefree energy

and the number of iterations to reach convergence, the LP approximation is very stable and fully

converges to the original VGPA with onlyMo = 2 order of polynomial. The experiments were

extended up toMo= 20, and showed similar outcomes although with higher computational cost

and are omitted from the plots. The observation density considered (i.e.Nobs= 10) implies that

Mo= 9 is the limit where both algorithms LP and VGPA optimise the same number of parameters.

For values ofMo > 9, the LP becomes more demanding in computational resources. However,

when tested withMo= 3, Lpoly = 9,648 whilstNtotal = 24,000 hence achieving 59.8% reduction

in optimised variables.
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Figure 6.13: (a) Boxplots of the free energy attained from 50 realisationsof the observation noise
(on a single L3D sample path) as a function of the order of polynomialsMo. The horizontal dashed
line (and the solid ones above and below) represent the 25, 50 and 75 percentiles from the VGPA
free energy on the same data sets. (b) Presents a similar plot but for the number of iterations, in
the SCG optimisation routine, that convergence was achieved. In both plots the extreme values
(outliers) have been removed for clearer presentation.

The reduction in the memory requirements of the algorithm does not produce asimilar reduc-

tion in computational time. Figures 6.7(b), 6.9(b) and 6.13(b) compare the number of iterations of

the LP algorithm to reach convergence with the number of iterations from the VGPA. These results

are summaries from 50 different realizations (of the observation noise ona single trajectory) of

the OU, DW and L3D systems respectively, and show that the VGPA algorithm,while optimising

a larger number of parameters, still converges in slightly fewer iterations.

6.3.3 Results of parameter estimation

The new LP algorithm is able to estimate the (hyper-) parameters of the aforementioned dynamical

systems, in the same way as in the original VGPA algorithm. Chapter 4, describedtwo ways of

performing this task. First by constructing discrete approximations to the posterior distribution

of the parameters and second by providing Maximum Likelihood type-II point estimates. Both
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approaches are based on the upper bound that thevariational free energyprovides to the true

marginal likelihood (Eq. 4.6). In this section the focus is on estimating the drift parameters�

and diffusion coefficientΣ, although estimation of the prior distribution, over the initial state (i.e.

N (µ0,τ0)) and the noise related to the observationsR are straightforward extensions.
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Figure 6.14:OU system: (a) The profile marginal likelihood of the drift parameterθ, keeping
the system noiseΣ fixed to its true value, obtained by the GP regression (blue circles) with the
OU kernel, which gives the exact likelihood, against the original VGPA algorithm (green squares)
and the new LP extension with different order of polynomials. (b) The histogram of the posterior
samples obtained with the HMC. The continuous green line shows theG(4.0,0.5) prior of the
(hyper)-parameterθ, while the red circles connected with the dot-dashed line represent the discrete
approximation to the posterior distribution obtained by the point estimates of the LPalgorithm with
4’th order polynomials. Both the HMC posterior sample histogram and the LP approximation have
been normalized, such that the area they define sums to unity. In both figures the vertical dashed
line represents the true parameter value that generated the data.

Figure 6.14(a), compares the profile of the approximate marginal likelihood,of the OU drift

parameter, obtained with the original variational framework and the local polynomial approxi-

mation, on a typical realisation. For this system the “true” marginal likelihood can be obtained

using a Gaussian process regression smoother (with OU kernel function). Also the LP framework

converges to the original VGPA when 4’th order polynomials are employed,which is consistent

with the state estimation results in Fig 6.7(a). The minimum of the profile can be well identified

with only 2’nd order polynomials, which suggests that for the drift parameter, in this example, the

bound on the true likelihood does not need to be very precise, if a point estimator is sought.

Figure 6.14(b), shows the results from the LP (of 4’th order) discrete approximation to the

posterior distribution of the drift parameterθ using aG(4.0,0.5) prior. Here the results are com-

pared with 80,000 posterior samples (presented as a histogram), obtained from four independent

Markov chains (20,000 samples per chain), using HMC sampling. The same prior distribution

(continuous green line) is used in both cases and in addition the results are presented such that the

areas defined by the histogram and the approximate discrete estimates (red circles), sum to one.

Although the results, for both algorithms, are slightly biased the LP algorithm provides a better

approximation because for a linear system, such as the OU, the variational Gaussian process yields
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an optimal approximation while the HMC approximation remains subject to finite sampleeffects.
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Figure 6.15:OU system:(a) Plot similar to Fig. 6.14(a) only for the system noise varianceσ2 and
keeping the driftθ fixed to its true value. Again, the results of the GP regression represent the
exact marginal likelihood. (b) As Fig. 6.14(b), only the continuous line nowis theG−1(3.0,2.0)
prior of the (hyper-) parameterσ2.

Figures 6.15(a) and 6.15(b), show similar profile and posterior results, but for the OU system

noise coefficientσ2. It is apparent that for this parameter the LP method needs higher order

polynomials to match the results from the original VGPA. All methods locate the minimum of the

profile at a smaller value than the true one. Furthermore, both methods seem to deviate from the

true likelihood (blue circles), as the value of this parameter becomes more distant from the true

value that generated the data. The same bias effect can also be seen in Figure 6.15(b), where the

LP method (5’th order) is compared with the HMC posterior sampling. However, MCMC methods

for sampling this parameter can be problematic due to the high dependencies between the system

noiseσ2 and the states of the systemxt , which results in slow rates of convergence (Roberts and

Stramer, 2001; Golightly and Wilkinson, 2006). Again the sameG−1(3.0,2.0) prior (continuous

green line), was used for both algorithms.

Similarly, the approximate posterior distributions and profile likelihoods, for a single reali-

sation of the DW system are presented for the driftθ in Figures 6.16(a) and 6.16(b) and for the

diffusion coefficientσ2 in Figures 6.17(a) and 6.17(b). Here there is no method to compute the

exact likelihood, hence the only comparison is between the profiles obtainedfrom the VGPA al-

gorithm against those obtained with the LP. For both parametersθ andσ2, the results are almost

identical with 3’rd order polynomials. Both estimates are biased, the drift towards a higher value,

while the noise towards a smaller value, but these biases are consistent with those seen in the HMC

posterior samples.

The profiles of the drift parameter vector� = [σ ρ β]⊤ for the L3D system are shown in

Fig. 6.18(a) where the original VGPA algorithm (red circles) is plotted against the LP approxi-

mation, with 2’nd order polynomials (green squares). The results are almost indistinguishable and

89



Chapter 6 LOCAL POLYNOMIAL EXTENSION

0  0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

10

20

30

40

50

60

70

80

θ

F
(θ

)

 

 

VGPA
LP1
LP2
LP3

(a) θ marginal profile

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

θ

p(
θ)

 

 

HMC
θ(true)
Γ(α, β)
LP3

(b) Posterior distribution p(θ)

Figure 6.16:DW system:(a) The profile approximate marginal likelihood of the drift parameter
θ, keeping the system noiseσ2 fixed to its true value, obtained by original VGPA algorithm (blue
circles) and the new LP extension with different order of polynomials. (b)The histogram of the
posterior samples obtained using the HMC. The continuous green line shows theG(2.0,0.5) prior
of the (hyper-) parameterθ, whilst the red circles connected with the dot-dashed line represent the
approximate posterior distribution obtained by the discrete estimates of the LP algorithm with 3’rd
order polynomials. Both the HMC posterior sample histogram and the LP point estimates have
been normalized, such that the area they define sums to one.
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Figure 6.17:DW system:(a) Plot similar to Fig. 6.16(a) only for the system noise varianceσ2 and
keeping the driftθ fixed to its true value. (b) As in Fig. 6.16(b), only the continuous line now is
theG−1(3.0,2.0) prior of the (hyper-) parameterσ2. Again the areas that both algorithms define
(HMC and LP) have been normalized. In both figures the vertical dashedline represent the true
parameter value that generated the data.

the minimum values are well estimated for all parameters. Fig. 6.18(b), presents similar profiles

but for the diagonal elements of theΣ matrix (i.e. σ2
x, σ2

y andσ2
z). Although both the VGPA and

the LP (3’rd order) exhibit identical behaviour unlike the drift parameters the system noise profiles

are not as informative. Only the first dimension ‘x’, shows a clear minimum, although strongly

biased towards a smaller value (the true values are indicated with vertical dashed lines). The third

dimension ‘z’, shows a weak minimum, i.e. there is quite flat region around the minimum value

and the second dimension ‘y’, does not possess a minimum within the range of values explored.

Figure 6.19 (upper three panels), presents the posterior estimates of theL3D drift vector�,

obtained from the HMC algorithm. The lower three panels present the approximate posterior
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Figure 6.18:L3D system:(a) The profile approximate marginal likelihood for all three parameters
of the L3D drift vector. From left to right the profiles forσ, ρ andβ obtained from the original
VGPA algorithm (red circles) are compared against those obtained with the LP with 2’nd order
polynomials (green squares). (b) As before but for the system noise,on each dimension (σ2

x,
σ2

y andσ2
z). Here the LP approximation uses 3’rd order polynomials. The vertical dashed lines

indicate the true values of the parameters that generated the datasets.

distributions (discrete estimates) from the LP algorithm. Both algorithms used the same prior

distributionsp0(σ) = G(20,0.5), p0(ρ) = G(56,0.5) and p0(β) = G(6,0.5). Nonetheless, the

comparison between the upper and lower panels is not straightforward because the approximate

posterior distributions obtained with the LP algorithm are conditional, in the sense that the two

other drift parameters are kept fixed to their true values, whereas the posterior distributions from

the HMC are obtained jointly (i.e. all the drift parameters are sampled simultaneously). The

results from the LP method show weak biases towards smaller values in all parameters, which

is consistent with the HMC results, except theσ (drift) parameter (first column) which the LP

approximation estimates more accurately.

6.3.4 Stochastic Lorenz ’96 (40D)

In this section the application of the new LP variational approximation framework is illustrated in

a forty dimensional system, namely the Lorenz ’96 (L40D). An example of thissystem is given in

Figure 6.20(a), where all forty dimensions are shown for a time period of ten unitsT = [0,10].

Figure 6.20(b), shows the approximate marginal meanmt and varianceSt , of three selected

dimensions from theL40D system. The mean paths are reasonably smooth and the variances

are broad enough to enclose the observations. Similar results were also obtained for the other

dimensions of the system.

Finally the new approach was compared against the original VGPA algorithm,in produc-

ing conditional profiles for the forcing (drift) parameter� (see Figure 6.21(a)) and system noise

coefficientsΣ (see Figure 6.21(b), for the system noise in the the 20’th dimension). Both algo-

rithms produce smooth profiles, with the new approach identifying the minimum slightly better.
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Figure 6.19:L3D system: The upper three panels, starting from left to right, present the joint
posterior HMC samples for the drift parametersσ, ρ andβ. The lower three panels, following the
same order, show the approximate posterior distributions (blue dots connected with the dot-dashed
line) obtained from the LP algorithm with 2’nd order polynomials. The continuous lines represent
the Gammaprior distributions that were used. Notice that the priors are very broad.In all the
above results the system noise is assumed to be known and fixed to its true value.

t

X
(t

)

 

 

0 1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40 −10

−5

0

5

10

(a) L40D sample path

0 2 4 6 8 10
−20

0

20

m
36

(t
)

0 2 4 6 8 10
−20

0

20

m
19

(t
)

0 2 4 6 8 10
−20

0

20

t

m
6(t

)

(b) marginalmt andSt

Figure 6.20:Lorenz 40D:In (a) all forty dimensions (top to bottom) of a ten units time-window
(T = [0,10]), of the stochastic Lorenz 40D system, used for the experiments. (b) presents three
examples (3’rd, 19’th and 36’th dimension) of the marginal means (solid green line) and variances
(shaded light green area) obtained with theLP algorithm (3’rd order), at convergence. The crosses
indicate the noisy observations. Similar result were also acquired for the remaining dimensions.

However, more important is that these results were obtained by achieving a significant reduc-

tion of 67.6% in optimisation space. For this example, with eight observations per time unit

(henceJ = (8× 10)+ 1 = 81) and third order polynomials (henceMo = 3), one needs to infer

Lpoly = 531,360 variables, comparing toNtotal = 1,640,000, of the original VGPA.
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Figure 6.21:Lorenz 40D:In (a) the approximate marginal profile log likelihood of the drift pa-
rameterθ, obtained with the originalVGPAalgorithm (left panel, red circles) is compared against
the one obtained with theLP algorithm with 3’rd order polynomials (right panel, blue diamonds).
In this example the system noise covariance matrixΣ is fixed to its true value. (b) presents similar
results but for the conditional estimation of the system noise on the 20’th dimension, assuming
the drift is known. Similar profiles were also generated for other dimensions. In all sub-plots the
vertical dashed lines represent the true values of the parameters that generated the data.

6.4 Discussion

This chapter has introduced an alternative parametrisation of the VGPA algorithm. This new

approach uses local polynomials to approximate the variational parametersAt andbt of the linear

drift approximation Eq. (4.7) to control the complexity of the algorithm and reduce the number

of variables need to be optimized. The LP algorithm is validated on a range of different systems

to test its convergence behaviour w.r.t. the original VGPA and shows excellent stability. In most

of the examples 3’rd order polynomials are required to match the original algorithm, although

the order is likely to increase as the observations become more sparse (i.e. the time between

observations increases).

Despite the notable reduction in optimized variables the LP approach does notproduce similar

results in computational time. This is mostly because the new gradients of the costfunction,

Equation (6.3), w.r.t. the coefficients of the polynomial approximations, haveto be computed

separately in each sub-interval where each polynomial is defined (see Appendix C). In the current

implementation priority was not given to the computational cost, hence a simple serial approach

was chosen. However, a parallel implementation in which the necessary gradients are computed

simultaneously is straightforward and could dramatically reduce the executiontime, especially

when treating long time windows.

The new LP algorithm can be used to construct, computationally cheap, discrete approxima-

tions to the posterior distribution of the (hyper-) parameters� andΣ (Section 4.5) and it shows

that it can match the results of the HMC sampling rather well, in the examples tested.

Another advantage with the LP framework is that different classes of polynomials can be
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used. This approach was explored here using mostly orthogonal classes of polynomials, such

as Chebyshev and Legendre. However the results were not significantly different in the systems

explored here and hence were omitted.

Although the application of this variational approach to the forty dimensional Lorenz ’96 sys-

tem (L40D) is very encouraging, there is still an open question on how these methods can be

applied to very high dimensional models (such as those used for numerical weather prediction).

The LP approximation is a step towards that direction. In most of the examples presented here

the computational resources were reduced by more than 60% (in terms of optimizing variables)

compared to the original VGPA. By imposing further assumptions on the Gaussian process ap-

proximation (e.g. by defining a special class of linear drift functions) it is possible to control the

complexity of the posterior variational approximation and reduce the number of variables even

further.
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Chapter 7 COMPARISON WITH OTHER METHODS

7.1 Foreword

Chapter 6 introduced a new extension of the VGPA algorithm, by approximatingthe variational pa-

rametersAt andbt of the linear driftgL(xt), with polynomials that were defined between each pair

of observations. The convergence properties of this approach, with respect to the original VGPA,

were tested and it was proven (experimentally), that this new approach can produce similar results

to the original framework with a significant reduction in the number of optimised variables. In

addition the new approach showed beneficial characteristics when estimated the model parameters

(discrete approximations to the posterior distributions).

Moreover, the original VGPA algorithm can also be used to provide point estimates of the

(hyper-) parameters, as shown in Chapter 4, within a gradient based estimation technique (pseu-

docode in Table 4.2). The same dual optimisation approach can also be usedwith the LP ap-

proximation framework, without any change in the implementation of the code, since the re-

parametrisation of the variational parametersAt and bt , affects only the smoothing algorithm

(see inner loop, Table 4.1), while leaving the outer loop unaffected. In fact, the new approach is

more flexible, because it is possible to adjust the bound of the variational algorithm to the marginal

likelihood, by tuning the order of the polynomial approximation.

The aim of this chapter is two fold:(a) to describe briefly, a range of different methodolo-

gies that were implemented which solve the state and parameter estimation problem, indynamical

systems, from a Bayesian point of view, as reviewed in Chapter 2 and(b) to present a compre-

hensive study in comparing, empirically, the aforementioned estimation methods with the new

LP approximation framework in terms of estimating the (hyper-) parameters of three dynamical

systems.

7.1.1 Chapter outline

The chapter begins with a brief description of different estimation methods that were implemented

to compare with the original VGPA and the LP extension on state and parameter estimation prob-

lems. Next, the methods are applied on a single example of the DW system highlighting the

different performances. However, the main contribution of this chapter ispresented in Section 7.4,

where an extensive empirical study compares the LP method with a dual-UnKFand a weak con-

straint 4D-Var method in estimating the parameters of three dynamical systems, namely the OU,

DW and L3D. The results are summarised and discussed in the final section.
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7.2 Methods implemented

This section briefly describes a range of estimation techniques that were implemented to assess

the original VGPA and the LP extension when estimating the systems states and (hyper-) param-

eters on a range of dynamical systems. The methods have already been introduced in Chapter 2,

therefore here a small description will be given along with some implementation details.

7.2.1 Ensemble Kalman filter / smoother

In general, ensemble filters are based on the intuition that it is easier to approximate a probability

distribution than it is to approximate a non-linear function. Therefore, ensemble methods use a

Monte Carlo approach and propagate forward in time a number of states (theensemble) through

the exact model. This ensemble (typically of sizeO(102)), represents the state’s distribution and

its first two moments, the mean and the covariance, are typically used as the summary statistics.

The (predictive) mean and covariance are given by:

mF
t =

1
N

N

∑
n=1

xn
t , (7.1)

SF
t =

1
N−1

N

∑
n=1

(xn
t −mF

t )(x
n
t −mF

t )
⊤ , (7.2)

whereN is the size of the ensemble,xn
t ∈ℜD represents then’th ensemble member (at discrete time

’t’) and mF
t ∈ℜD andSF

t ∈ℜD×D are the ensemble mean and covariance respectively. The super-

scriptF indicates that these are theFiltered mean and covariance, in contrast with theSmoothed

versions that will be introduced shortly.

Figure 7.1: The initial ensemble of particles (or system states), is propagated forward in time using
the exact modelm(). Then in the light of observation each ensemble (forecast) member is updated
and a new initial ensemble is created for the next propagation.

Figure 7.1 shows an example of the ensemble Kalman filter in practice. The algorithm pro-

ceeds as follows: initially an ensemble of particles{xn
t=0}Nn=1, is created by sampling from some
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prior distribution. Then each member of the ensemble is propagated forwardin time through the

full non-linear modelm(⋅) to create theforecastensemble (i.e.{xn
t+1}Nn=1 = {m(xn

t )}Nn=1). This

propagation is made until there is an observation. At observation times ’tk’ each ensemble member

is mapped through the general observation operatorh(⋅) (or H if is assumed linear for simplicity)

to the observation space and updated given the observationyk. Ideally, one could use an ensemble

of observations, so that each particle is updated by a different observation. This would ensure

the covariance structure of the ensemble is maintained in agreement with the observation’s error

covarianceR (Burgers et al., 1998). However, generating an ensemble of observations would be

too costly, therefore only a single measurementyk is used instead.

The ensemble Kalman smoother (EnKS), is a natural extension of the EnKF only instead of

assimilating the observations sequentially up to time ’t’ it uses all available observations within

the predefined time window. Two predominant approaches for smoothing are (a) the two-filter

smoother and (b) the forward-backwardsmoother. The first approach uses a linear combination

of two independent filters which run in forward and backward directions. However a common

mistake with this approach is the use of the inverse forward dynamics to obtain the backward

dynamical model, which does not in general lead to the correct result (Klaas et al., 2006). On

the contrary, the second smoothing approach requires a separate backward filter which recursively

computes corrections to the forward pass.

Many implementations of an EnKS have been introduced in the literature such asEvensen and

van Leeuwen (1999); van Leeuwen (2001). Here the smoothing approach is based on the Rauch-

Tung-Striebel smoother (Rauch et al., 1965) (forward-backward type) and implementation details

can be found in Sarkka (2008).

7.2.2 Unscented Kalman filter / smoother / dual estimation

The unscented Kalman filter (UnKF) is in the same spirit as the ensemble Kalman filter. The main

difference is that instead of maintaining a (possibly large) randomly generated ensemble, it rather

chooses deterministically a set of typically (N = 2D+1) particles (or sigma points), whereD is

the dimensionality of the state vectorxt . These sigma points capture essential information about

the first two moments of the distribution that they approximate. The predictive mean and variance

are given by weighted sums of the sigma points as follows:

mF
t =

N−1

∑
n=0

wn
(mean)x

n
t , (7.3)

SF
t =

N−1

∑
n=0

wn
(cov)(x

n
t −mF

t )(x
n
t −mF

t )
⊤ , (7.4)
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wherewn
(mean∣cov) ∈ ℜ defines then’th weight. Assuming that the state vectorxt (at time ’t’) has

meanmF
t and covarianceSF

t , the selection of sigma points for the next time instant ’t+1’ is done

according to the following rule:

�0
t = mF

t , (7.5)

�n
t = mF

t +

(√

(D+λ)SF
t

)n

,n = 1, . . . ,D , (7.6)

�n
t = mF

t −
(√

(D+λ)SF
t

)n−D

,n = D+1, . . . ,2D , (7.7)

xn
t+1 = f (�n

t ) ,n = 0, . . . ,2D , (7.8)

where f (⋅) is the non-linear transformation (system dynamics) and the exponentn (on the right

hand side) indicates the n’th column of the square matrix. The weights for the means and the

covariances need not be the same. These are selected (usually) only once at the beginning of the

estimation procedure as follows:

w0
(mean) = λ/(D+λ) , (7.9)

w0
(cov) = λ/(D+λ)+(1−α2+β) , (7.10)

wn
(mean∣cov) = 1/(2(D+λ)) ,n = 1, . . . ,2D ,with (7.11)

∑
n

wn
(mean∣cov) = 1 , (7.12)

whereλ = α2(D+κ)−D, is a scaling parameter,α ∈ℜ determines the spread of the sigma points

around the mean,κ ∈ℜ is a secondary scaling parameter (usually set to zero) andβ ∈ℜ is used to

incorporate prior knowledge of the distribution ofx. For further details concerning on the choice

of the sigma points and the tuning of the weights we refer to van der Merwe (2004).

As discussed in Chapter 2, this method utilizes a technique known as the “unscented transfor-

mation”, to estimate the states of the dynamical system considered and was primarily introduced,

as an alternative to the extended Kalman filter (EKF), to address its linearisation limitations. The

UnKF has been extended to model parameter estimation problems in Wan and vander Merwe

(2000) and Wan et al. (2000). Two approaches were taken:(a) augmenting the state vector with

the model parameters and then applying a single filter recursion to estimate both of them jointly

and(b) using two separate filters, one to estimate the system states, given the current estimates for

the parameters, and one to estimate the model parameters given the current state estimates. In the

latter approach the two filters are run in parallel and are known as thedual filter.

In this work, for estimating the states of a system a version of an unscented Kalman filter and

smoother were implemented as proposed in van der Merwe and Wan (2001) and Sarkka (2008),

respectively. These papers not only describe the proposed algorithmsbut also provide detailed

pseudocode which guided the implementation.
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For the estimation of the model parameters a dual unscented Kalman filter (dualUnKF), sim-

ilar to the one used by Gove and Hollinger (2006) to assimilate netCO2 exchange between the

surface and the atmosphere, is implemented. Again for more implementation details the reader is

referred to van der Merwe and Wan (2001).

7.2.3 Hybrid Monte Carlo

The HMC algorithm Duane et al. (1987), is a Markov chain Monte Carlo (MCMC) technique

that combines Hamiltonian molecular dynamics with the Metropolis-Hastings accept/ reject cri-

terion to sample from complex distributions. In this setting the HMC algorithm proposes a new

configuration (or a new sample path) by sampling from the posterior distribution Eq. (4.3).

The algorithm begins with an initial (discrete time) sample pathx j = {x j
k}Nk=0, where j > 0 is

the step in the iterative procedure and proposes a new sample pathx j+1 = {x j+1
k }Nk=0. This is done

by simulating, forward in time, a fictitious time deterministic system:

dxj
k

dτ
= pk , (7.13)

dpk

dτ
=−∂H (x j

k, pk)

∂x j
k

, (7.14)

where pk ∼ N (0,1) are the fictitious momentum variables assigned to each state variablexk,

resulting in a finite size random vectorp = {pk}Nk=0. The Hamiltonian of the systemH (x,p) is:

H (x,p) = Epot+Ekin , (7.15)

whereEpot =− ln ppost(x0:N∣y1:K), is the potential energy given by the negative log-posterior dis-

tribution of the target density (see Equation 4.3), associated with the dynamicsof the system (SDE)

including the observations andEkin =
1
2pp⊤ is the kinetic energy.

In practice, the deterministic Equations (7.13) and (7.14), are discretised with a time stepδτ

and numerically solved with aleapfrogintegration scheme:

p(τ+0.5ε) = p(τ)−0.5ε∇xL(x(τ)) , (7.16)

x(τ+ ε) = x(τ)+p(τ+0.5ε) , (7.17)

p(τ+ ε) = p(τ+0.5ε)−0.5ε∇xL(x(τ+ ε)) , (7.18)

whereε is the artificial step size and∇xL(x) =− ∂H (x,p)
∂x . For full details of the algorithm concern-

ing ergodicity of the chain and detailed balanced, see Neal (1996).

Finally, once the chain has converged to its stationary distribution, a large number of (discre-
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tised) sample paths is collected and the mean and covariance is computed as:

mS
t =

1
N

N

∑
n=1

xn
t , (7.19)

SS
t =

1
N−1

N

∑
n=1

(xn
t −mS

t )(x
n
t −mS

t )
⊤ , (7.20)

wheremS
t ∈ℜD andSS

t ∈ℜD×D are respectively theSmoothedmean and covariance at time ’t’.

7.2.4 Full weak constraint 4D-Var

As described earlier (Chapter 2), the4D-Var method minimizes a cost function that measures the

distance of the most probable trajectory from the observations, within a predefined time window of

inference. In most operational implementations the model equations are assumed perfect (strong

constraint), or that the errors are sufficiently small to be ignored. In this work the model is as-

sumed to be known only approximately, hence allowing for model error to exist in the problem

formulation. This formulation is known as “weak constraint 4D-Var”.

Tremolet (2006), describes different variations of this algorithm, with the one closer to our

approach denoted in his work, as “4D−Varx”, where the subscript “x” denotes the control variable

in the optimisation procedure. In the 4D-Var method implemented here since every (discrete in

time) system statexk is a control variable is also referred as “full weak constraint 4D-Var”.

Although the original 4D-Var method is well studied for estimating the states of a system,

not much work has been done in estimating model parameters. Navon (1997)provides a useful

review for parameter estimation, in the context of meteorology and oceanography. Here a dual

approach is followed, similar to the LP approximation algorithm. The estimation framework is

based on an outer / inner optimisation loop. The inner loop estimates the most probable trajectory,

given the current estimates for the drift and diffusion parameters and subsequently the outer loop,

conditioning on the most probable trajectory, updates the estimates of the parameters by taking a

gradient descent step. The cost function to optimize is given by:

Jcost= Jx0 +Jf +Jobs+Jhp+CΣ , (7.21)

whereJx0, is the contribution of the prior over the initial statexk=t0, Jf is the influence of the

model equations (drift function),Jobs is the contribution of the observations,Jhp comes from the

priors over the (hyper-) parameters andCΣ is a constant value that depends on the system noise

coefficientΣ. In practice, one needs to compute the gradients of the cost function with respect to

the control variables (i.e.∇x0:NJcost), for estimating the most probable trajectory (inner loop) and

then the gradients of the cost function with respect to the (hyper-) parameters (i.e. ∇�Jcost and

∇ΣJcost), for updating their values in the outer optimization loop.
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Constructing the weak constraint 4D-Var cost function

In a Bayesian framework, if one is interested in estimating the system statesx as well as the

model parameters1 Θ, then one is interested in the joint posterior distribution of the states and the

parameters, given the observations (i.e.p(x,Θ∣y)). Via Bayes rule this posterior is given by:

p(x,Θ∣y) = p(y∣x,Θ)p(x∣Θ)p(Θ)

p(y)
,

∝ p(y∣x,Θ)p(x∣Θ)p(Θ) , (7.22)

wherep(y∣x,Θ) is the likelihood of the observations given the current state of the system and the

(hyper-) parameters,p(x∣Θ) is the prior distribution over the system states given the the (hyper-

) parameters,p(Θ) is the prior over the (hyper-) parameters andp(y) is the marginal likelihood.

Having discretise the continuous time sample path{xt , t0≤ t ≤ t f }, using the Euler-Maruyama

method (Kloeden and Platen, 1999), the next step is to compute the following joint posterior

distribution of the states with the desired (hyper-) parameters:

p(x0:N,Θ∣y1:K) ∝ p(y1:K ∣x0:N,Θ)
︸ ︷︷ ︸

likelihood

p(x0:N∣Θ)
︸ ︷︷ ︸

prior

p(Θ)
︸ ︷︷ ︸

prior

, (7.23)

whereN = ∣t0− t f ∣/δt, is the total number of discrete state variables andK denotes the total

number of observations.

Likelihood of the observations

Assuming that the measurements are i.i.d. with zero mean and covariance matrixR, the likelihood

expression for the observations yields:

p(y1:K ∣x0:N,Θ) =
K

∏
k=1

N (yk−xtk∣R) ,

=
K

∏
k=1

(2π)−D/2∣R∣−1/2exp{−0.5(yk−xtk)
⊤R−1(yk−xtk)} ,

=
[

(2π)−D/2∣R∣−1/2
]K

exp{−0.5
K

∑
k=1

(yk−xtk)
⊤R−1(yk−xtk)} , (7.24)

where the dependency onΘ comes through the sample pathx0:N and all the assumptions about

the state and observation vector dimensions are the same as introduced in Chapter 4. In addition

the observationsyk are assumed direct measurements of the statesxtk, therefore the observation

operatorh(⋅) is omitted.

1Within the current frameworkΘ includes all the parameters in the drift and the system noise covariance matrix

(i.e. Θ = {�,Σ}).
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Prior distribution over the states

Using the assumption that the process is Markovian, the prior distribution of the states is given by:

p(x0:N∣Θ) = p(x0)
N−1

∏
k=0

p(xk+1∣xk) , (7.25)

= p(x0)
N−1

∏
k=0

N (xk+1∣xk+ f(xk;�)δt,Σδt) , (7.26)

= p(x0)
[

(2π)−D/2∣Σδt∣−1/2
]N
×

N−1

∏
k=0

exp{−0.5(δxk+1− f(xk;�)δt)⊤(Σδt)−1(δxk+1− f(xk;�)δt)} , (7.27)

= p(x0)
[

(2π)−D/2∣Σδt∣−1/2
]N
×

exp{−0.5δt
N−1

∑
k=0

(
δxk+1

δt
− f(xk;�))

⊤
Σ
−1(

δxk+1

δt
− f(xk;�))}, (7.28)

whereδxk+1 = xk+1−xk andδt = tk+1−tk. The initial statex0, is chosen to be normally distributed

such asx0 ∼ N (�0,Λ0). Notice also the unusual scaling of the system noise coefficientΣ, with

the time incrementδt. This comes from the discrete version of the SDE (Equation 6.6), where the

scaling is necessary to achieve the limit of the diffusion process asδt→ 0 (see Chapter 2).

Prior distribution over the parameters

For this prior density it is assumed that the parameters have no dependencies between them, hence

their joint density can be expressed as the product of their marginal densities:

p(Θ) = p(�,Σ) ,

= p(�)p(Σ) , (7.29)

wherep(�) is the prior marginal distribution of the drift parameters andp(Σ) is the same but for

the system noise coefficient. The derivations of these expressions arenot further extended because

these densities can be parametrized with any distribution of choice. In this 4D-Var setting the same

prior distributions as in the HMC and the variational framework are used. That is p(�) = G(α,β)

andp(Σ) = G−1(a,b).

Jcost - Total cost function

It is common practice in optimisation when one wants to find the minimum (or maximum), of

a cost function to look for the minimum (or maximum) of the logarithm of the cost function

(due to the monotonicity of the logarithmic function). Hence instead of maximizing theposterior
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p(x0:N,Θ∣y1:K), one can minimize the negative lnp(x0:N,Θ∣y1:K), which has some nice character-

istics. Therefore, the complete cost function is given by:

Jcost= − ln p(x0)
︸ ︷︷ ︸

Jx0

+ 0.5δt
N−1

∑
k=0

(
δxk+1

δt
− f(xk;�)

)⊤
Σ
−1

(
δxk+1

δt
− f(xk;�)

)

︸ ︷︷ ︸

Jf

+ 0.5
K

∑
k=1

(yk−xtk)
⊤R−1(yk−xtk)

︸ ︷︷ ︸

Jobs

− ln p(�)− ln p(Σ)
︸ ︷︷ ︸

Jhp

+ 0.5(K ln ∣R∣+N ln ∣Σδt∣+K N D ln(2π) )
︸ ︷︷ ︸

CΣ

, (7.30)

whereK > 0 is the total number of observations,N > 0 is the number of the discrete time states

andD > 0 is dimensions of the system states and observations. It is worth noticing thatunlike

most implementations of weak constraint 4D-Var, where the termCΣ is omitted (because in state

estimation this constant vanishes), in this setting it is important to include it if one wants to perform

the estimation of the system noiseΣ properly.

7.3 State estimation

This section compares the estimation methods described in Section 7.2, on a typical DW realisa-

tion. This is done for illustration purposes to demonstrate the different results obtained with each

algorithm. The time window isT = [0,8] with discretisation stepδt = 0.01. The drift and diffu-

sion parameters are set toθ = 1, andσ2 = 0.8 andK = 8 observations are measured (one per time

unit) with noise varianceR= 0.04. For simplicity, all filtering and smoothing algorithms (except

the HMC), start with identical fixed initial values for the marginal means and variances (m0 = x0

andS0 = 0.1).

Figures 7.2(a) and 7.2(b) present the results of the ensemble Kalman filter and smoother re-

spectively, with 5000 ensemble members. The reason for choosing so highensemble size is to

provide a smooth solution. As expected, in the absence of observations theEnKF increases the

variance fast and only at observation times it reduces it rapidly. The EnKS does better, producing

a smoother approximation to the mean path and does not overestimate the uncertainty like the

EnKF. Observe that both algorithms at the final time are identical, as should beexpected. Never-

theless, both algorithms perform poorly in tracking the transition between the two wells. Ensemble

Kalman methods provide an effective means to approximate the evolution of the probability dis-

tributions for non-linear dynamics, however as discussed in Miller et al. (1999), problems still

remain in properly tracking transitions in systems with multi-modal statistics.

Similar remarks can be made for Figures 7.3(a) and 7.3(b), where the results from the un-

scented methods are illustrated. In general the estimation of the variance is more conservative,
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(a) Ensemble Kalman filter
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(b) Ensemble Kalman smoother

Figure 7.2: Application of the ensemble Kalman filter (a) and smoother (b) to a single dataset (8
noisy observations) of a typical DW realisation. Both algorithms use 5,000 ensemble members to
approximate the filtering and smoothing distribution respectively. Continuous (smooth) blue lines
indicates the mean paths and the shaded areas the variances. In both plots the true history that
generated the observed data is plotted on top of the predictive results (black rough trajectory).
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(a) Unscented Kalman filter
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(b) Unscented Kalman smoother

Figure 7.3: (a) and (b), same as 7.2(a) and 7.2(b), but with the unscented algorithms.

compared to their ensemble counterparts (Figs. 7.2(a) and 7.2(b)) and only at the transition time is

the variance overestimated.
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(a) GPr - Squared Exponential kernel
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(b) GPr - Ornstein-Uhlenbeck kernel

Figure 7.4: Gaussian process regression (GPr) smoothing. For (a) thesquared exponential (SE)
kernel is used, whereas for (b) the stationary OU kernel. The datasetis the same as Fig. 7.3(a).

Although not described thoroughly in this thesis, Gaussian Process Regression (GPR) smooth-

ing is a common tool in machine learning to perform inference in unobserved data. Rasmussen
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and Williams (2006), provide a detailed study on this subject and also give implementation de-

tails. Here, the GPR is used with two different kernels, these are the Squared Exponential kernel

K(xt ,xs) = exp{−0.5∣xt − xs∣2} and the non-stationary OU kernel Eq. (3.7). Both Figures 7.4(a)

and 7.4(b), show that the GPR produce very smooth results for the approximate mean paths.

Clearly both of the kernels used are not appropriate to perform inference for this system. Note

also how the GPR using the OU kernel overestimates the posterior covariance. However, this is

not a surprising result as GPR does not assume any dynamics in the underlying system that gen-

erated the observed data. The only case with the GPR can be used to perform exact inference

in SDEs is the OU system (as shown in Chapter 3), where the transition pdf is given by the OU

kernel.

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

t

x(
t)

(a) VGPA algorithm
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(b) Markov chain Monte Carlo

Figure 7.5: Original VGPA (a) vs HMC sampling (b). The HMC for this exampleis considered as
the reference solution.

The last two figures of this section (Figs. 7.5(a) and 7.5(b)), provide theresults from the

original version of the VGPA algorithm in contrast with the HMC posterior sampling algorithm.

For this example, the HMC is assumed to provide the reference solution. Compared to all the

above methods, the VGPA seems to provide a very good approximation to the posterior process.

The variance is slightly underestimated, compared to the HMC results, but the mean path matches

the HMC mean path rather well and the transition is tracked accurately. An obvious difference

with the HMC is at the end of the time window (after the last observation) where the mean paths

start to deviate and the variance is strongly underestimated. This is explainedby the fact that the

linear approximation that is imposed by the VGPA, in the absence of observations, restricts the

algorithm and prevents it from “seeing” the other well of the system. The VGPA focuses on the

correct posterior mode as long as there are available observations and when the observations stop

it remains in the last visited mode keeping the variance appropriately fixed. Onthe contrary the

HMC in the absence of observations becomes “confused” and is unsureon which mode to stay,

therefore it returns to the true mean of the equilibrium process (which for this system isxt = 0,

see Figure 3.2(a)) and its variance diffuses in both wells.
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7.4 Parameter estimation

This section presents an empirical comparison of the marginal and joint estimation of the drift

� and diffusion coefficientΣ, using the UnKF, 4D-Var and LP methodologies in two distinct

asymptotic regimes:(a) infill asymptotics, where the observations are sampled more and more

densely, within a fixed time domain (i.e.Nobs→ ∞, while T = [t0, t f ]) and(b) increasing domain

asymptotics, where the observation density remains fixed, whilst the time window of inference

increases (i.e.Nobs = const. andT→ ∞).

7.4.1 Infill asymptotic behaviour

Before proceeding a few issues need to be clarified concerning the presentation of the results. As

mentioned earlier the variational LP approximation method and the weak constraint 4D-Var based

algorithm, provide point estimates of the (hyper-) parameters, in a gradientbased optimisation

framework. The dual unscented Kalman filter approach provides mean estimates (of the param-

eters), as a function of time. To make the results of the dual UnKF more comparable with those

from the other two methods the collection of the mean estimates is treated as a (filtered) distri-

bution and then estimates of its moments, such as the mean value (Hansen and Penland, 2007),

are calculated. An example of this procedure is shown in Figure 7.6, wherethe dual UnKF is

applied to estimate the drift parameter of the DW system, on a single data set. As a general rule,

only the second half of the time period is used to estimate the mean values. The rational is that

in these controlled experiments1 there is no need to average over the whole time window because

the initial estimated value is wrong, hence the filter is allowed to converge around a value. The

second remark has to do with the quantities that are plotted. In order to provide a more general

analysis thirty different observation noise realisations were created, for each observation density.

The results are presented as summary statistics, illustrated using the 25’th, 50’th (or median value)

and the 75’th percentile of the estimated values from each algorithm.

The conditional2 drift estimation of the OU and DW systems is shown in Figures 7.7(a) and

7.7(b) respectively. The results for the OU system show that the LP approximation has a small

increasing trend and settles to a higher value, compared with 4D-Var, although this higher value

is also seen in the HMC posterior estimates of this parameter (Fig. 6.14(b)). Also both algorithms

narrow the range of estimates, as the observation density increases (the error bars are closer to the

median value), as one would expect. On the other hand the results from the UnKF based algorithm,

1Here it is implied that the true values that generated the data are known a priori and also the initial values of the

estimation process are deliberately wrong but close to the true one.
2This term is used to signify that all the other parameters, such as the systemand observation noises (Σ andR),

are assumed known and fixed to their true values.
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Figure 7.6: An example of mapping the results from the application of the dual UnKF algorithm
applied to a single trajectory, estimating the DW drift parameter, to a point estimate (mean value).
The blue circles indicate the ensemble mean estimates as a function of time, while the continuous
red line is the mean value of these estimates over the period used for averaging. The vertical
dashed line marks the beginning of the time window where the average takes place.

show a more steep trend and only when the system is highly observed are theestimates close to

the true generating value. Here, as in all the experiments that follow, all three algorithms were

initialized with the same value for the parameter(s) that were estimated.
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Figure 7.7:Drift (conditional) estimation:(a) Presents the summary statistics (25’th, 50’th and
75’th percentiles) after estimating the drift parameterθ from thirty different realizations, of the
observation noise, on the OU system keeping the system noise coefficientσ2 fixed to its true
value. The left panel (blue) presents the results from theLP algorithm, while the middle (red)
and the right (green) the results from the(full) weak-constrained 4D-Varand thedual UnKF
respectively. In (b) the same estimation experiment is repeated but for thirtydifferent realizations,
of the observation noise, of the DW system. All estimation results are presented as functions of
increasing observation density.

For the DW system the algorithms were more stable, in the sense that they converge to a

stable value and there are no major trends as in the OU case. The results from all methods are

biased either towards higher values (LP and 4D-Var), or lower values (UnKF). Once again the LP

algorithm bias matches the HMC posterior estimates as shown in Fig. 6.16(b). Although the results

from the dual UnKF seem inferior compared to the other two algorithms, it should be recalled that
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this is a filter estimation, which means that it “sees” the observations sequentially, only up to the

current time and does not take into account the future observations.

Figures 7.8(a) and 7.8(b), present the results of estimating the system noise σ2, of the OU

and DW systems. This shows only the estimates obtained from the LP approximation method.

The other methods, although applied to the same datasets, were unable to provide good estimates,

hence were omitted. It is obvious that the estimation for the OU system is stable, while for the

DW the process needs to be well observed (e.g.Nobs≥ 10), before converging to a value. Both

plots show consistency with the HMC posterior estimates presented in Chapter 6.

0 2 4 6 8 10 12 14 16 18 20 22
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Nobs

σ2 es
t

(a) σ2
OU estimation

0 2 4 6 8 10 12 14 16 18 20 22
0.4

0.5

0.6

0.7

0.8

0.9

1

Nobs

σ2 es
t

(b) σ2
DW estimation

Figure 7.8: Noise (conditional) estimation:(a) shows the conditional estimation of the system
noise coefficientσ2, keepingθ at its true value. The plot presents the 50’th percentile (red circles)
and the 25’th to 75’th percentiles (blue vertical lines). (b) repeats the sameexperiment but for
the DW system. All results were obtained with theLP method (3’rd order) and are presented as
functions of increasing observation density.

The experiments on the uni-variate systems conclude with the joint estimation of thedrift pa-

rameterθ and the system noise coefficientσ2. Figures 7.9(a) and 7.9(b), summarize the results

attained from the LP approximation method. The drift estimation for the OU system,shows a

significant bias to smaller values (compared with the conditional estimation of Fig.7.7(a)), where

the bias was towards a higher value. These estimates become more confidentas the observation

density increases (smaller error bars). Meanwhile, the estimation of the OU diffusion noise is

consistent with the conditional outcomes. Unlike the OU system, the DW shows consistent esti-

mation for the drift parameter and a surprising improvement of the system noise estimation. In

these plots, in contrast to the conditional ones, there cannot be a direct reference to the posterior

HMC estimates, because here the parameters are estimated simultaneously, whilethe results of

the HMC, in Chapter 6, were obtained by fixing the parameters that are not estimated to their true

values.

Next the conditional estimation of the drift vector�, of the L3D system is considered (Figure

7.10). It is clear that in this example the 4D-Var estimation method (middle column), performs

better and produces more stable results. The LP algorithm when tested with 4 and 6 observations
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Figure 7.9: Joint estimation: In (a) the drift and diffusion coefficient, of the OU system, are
estimated jointly. The left upper panel shows the results forθ, while the left lower panel forσ2.
The results are summaries (25’th, 50’th and 75’th percentiles) from thirty different observation
realizations. (b) shows the same joint estimation but for the DW system. The right upper panel
shows the results forθ, while the right lower panel forσ2. All results were obtained with theLP
method (3’rd order) and are presented as functions of increasing observation density.

per time unit seems to be under-sampled and the state estimation (inner loop of the optimisation

procedure) does not actually converge to the optimal posterior process. Therefore, the parameter

estimates are no longer reliable. When the process is observed more frequently (e.g.Nobs≥ 8), it

produces more stable results. The dual UnKF estimation results are reliable,with the exception of

theρ parameter (third column, second row), which is very biased with sparse observations. How-

ever, all parameters asymptotically converge close to the true values, as theobservation density

increases.

Similar to the univariate systems, the conditional estimation of the system noise coefficientΣ,

was feasible only with the variational LP approximation algorithm. Because the covariance matrix

is assumed diagonal (see Eq. 4.1), one needs to estimate only the three diagonal components,

which correspond to the noise added in each dimension of the L3D dynamicalequations (see

Eq. 3.9). Figure 7.11 suggests that to estimate this very important parameter onehas to have

dense observations. For the L3D system all three dimensions are observed. Componentsσ2
x

andσ2
z converge close to the true values roughly after 16 observations, per time unit, while the

σ2
y parameter converges to a higher value. These results are in agreement with the approximate

marginal profiles produced earlier (Fig. 6.18(b)).

To conclude with theinfill asymptoticssection, the application of the newly proposed LP

approximation framework is demonstrated to the joint estimation of the drift and diffusion matrix

of the L3D system. In total six (hyper-) parameters (σ, ρ, β, σ2
x, σ2

y andσ2
z), are estimated as

shown in Figure 7.12. The asymptotic behaviour is similar to that observed when estimating the

parameters conditionally, which gives some level of confidence that the algorithm is stable. The

general message is that good estimates can be achieved when the system is well observed.
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Figure 7.10:Drift (conditional) estimation:The infill asymptotic results for theL3D drift param-
eter vector�. The summary results when seen horizontally compare the same drift parameter but
with different estimation methods, while vertically the results are presented forthe same estima-
tion method but for all three parameters (σ, ρ andβ). The methods tested, from left to right are
theLP algorithm (3’rd order), the(full) weak-constraint 4D-Varand thedual UnKFaccordingly.
In all sub-plots the horizontal dashed lines indicate the true values of the drift parameters that
generated the observed trajectories. Where possible they-axiswas kept the same for all plots to
make comparison easier. All algorithms were tested on the same thirty differentrealisations of the
observation noise.
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Figure 7.11:Noise (conditional) estimation:Summary results (25’th, 50’th and 75’th percentiles)
from thirty different observation realizations, of theL3D system, when estimating conditionally
the system noise coefficient matrixΣ. The results were obtained using theLP algorithm (3’rd
order) and are presented as functions of increasing observation density. The estimation of the
noise is presented separately in each dimensionx, y andz from left panel to right accordingly.
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Figure 7.12:Joint estimation:The summary results (25’th, 50’th and 75’th percentiles) when
estimating jointly the drift parametersσ, ρ andβ (upper three panels), and the system noise co-
efficientsσ2

x, σ2
y andσ2

z (lower three panels), of theL3D system. The same dataset of the thirty
different realisations of the observation noise is used, as in the previousexperiments.

7.4.2 Increasing domain asymptotic behaviour

This section discusses another important asymptotic property; when the observationdensityre-

mains fixed, but the duration that an event (or the random process) is observed, increases. To

explore this behaviour new extended sample paths were created for all thedynamical systems

considered in our previous simulations and then the total time-window was split intosmaller, but

equal, time intervals.

To be more precise, an example is given on the DW system. Figure 7.13, presents a sample

path (or history) of the DW system with time-windowTtotal = [0,50]. The next step consists

of measuring the history with fixed observation density (e.g.Nobs = 2). Then the total time-

window is divided in five sub-domains, of ten time units and create five time-windows (T10 =

[0,10], T20= [0,20], ⋅ ⋅ ⋅ , T50= [0,50]), including the observations from the previous steps. Finally,

the estimation methods are applied on each sub-interval, by introducing the newobservations

incrementally.

Figures 7.14(a) and 7.14(b), show the results of the conditional drift estimation for the OU

and the DW systems respectively, as the time-window of inference increases. As in theinfill

asymptoticsimulations, thirty different realizations of the observation noise were generated and

the results are presented as summary statistics of the estimation outcomes. Because the number of
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Figure 7.13: A typical example of aDW sample path with an extended time-window that is used
for the increasing domainasymptotic behaviour of the algorithms. The vertical dotted lines split
the total time window in five time domains starting fromT10 = [0,10] to T50 = [0,50], which are
presented to the estimation methods incrementally.

simulations performed are fewer than in the previous case all the results arepresented as boxplots

which provide a richer presentation. It is apparent that in this type of asymptotic convergence, the

LP approximation algorithm is remarkably stable with results that are very closeto the ones that

generated the data. The drop under the true value (as indicated by the horizontal dashed line), in

the DW example (Fig. 7.14(b)), for the third time window (i.e.T30 = [0,30]), can be explained

by the fact that the transition between the two wells happens between the 24’thto 26’th time

units, as shown in Figure 7.13. However, when the time-window increases further the algorithm

recovers back to the previous value. For the same example, the 4D-Var method starts with a higher

estimated value but after the transition occurs it settles to a lower value. A similar behaviour can

also be observed for the UnKF results, were the method approaches the true value, although it

becomes less confident (larger error bars), which was somewhat unexpected behaviour.

The conditionally estimated diffusion coefficients are presented in Figures 7.15(a), for the OU

and 7.15(b), for the DW. Here only the LP approximation method was used, as in the previous

section. The estimates, for both examples, are stable and improve as the time window increases.

Especially for the DW, the results get closer to the true value after the transition has been observed

(T30). In a similar way, the results for the joint estimation of the driftθ and diffusionσ2, are

consistent and presented in Figures 7.16(a) and 7.16(b).

This section concludes with the results of the L3D system. Figure 7.17, presents the summaries

of the jointly estimated drift parameter vector�= [σ ρ β]⊤, conditional on the system noise matrix

Σ set to its true value, from all three estimation methods. All algorithms are stable and produce

good results, with the 4D-Var having the smallest bias. Once again, the 4D-Var and UnKF methods

failed to provide stable results when estimating the system noise coefficients, hence only results

113



Chapter 7 COMPARISON WITH OTHER METHODS

0 102030405060
1.4

1.6

1.8

2

2.2

2.4

2.6

θ es
t

LP4

T
0 102030405060

1.4

1.6

1.8

2

2.2

2.4

2.6

4D−Var

T
0 102030405060

1.4

1.6

1.8

2

2.2

2.4

2.6

UnKf

T
(a) θOU estimation

0 102030405060
0.6

0.7

0.8

0.9

1

1.1

θ es
t

T

LP3

0 102030405060
0.6

0.7

0.8

0.9

1

1.1

4D−Var

T
0 102030405060

0.7

0.8

0.9

1

1.1

UnKf

T
(b) θDW estimation

Figure 7.14:Drift (conditional) estimation:(a) Presents the summary statistics (boxplots) after
estimating the drift parameterθ from thirty different realizations, of the observation noise, on the
OU system keeping the system noise coefficientσ2 fixed to its true value. The left panel presents
the results from theLP algorithm, while the middle and the right the results from the(full) weak-
constrained 4D-Varand thedual UnKF respectively. In (b) we repeat the same estimation ex-
periment but for thirty different realizations, of the observation noise, of the DW system. All
estimation results are presented as functions of increasing time domain, keeping the observation
density fixed.
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Figure 7.15:Noise (conditional) estimation:(a) shows the conditional estimation of the system
noise coefficientσ2, keepingθ to its true value. The plot presents boxplots (5’th, 25’th, 50’th,
75’th and 95’th percentiles), from thirty different realizations, of the observation noise, of the OU
system. (b) repeats the same experiment but for the DW system. All results were obtained with
theLP method (3’rd order) and are presented as functions of increasing time domain, keeping the
observation density fixed.

from the LP method are shown. The joint estimation of the noise coefficientsσ2
x, σ2

y and σ2
z,

conditional on the drift vector� being fixed to it true value, are illustrated at Figure 7.18, where

it was necessary to observe with quite high density (Nobs= 18). In addition, the joint estimation

of all the (hyper-) parameters, of the L3D system, as the time-window of inference increases, is

shown in Figure 7.19. The results are in accordance with the conditional estimates, although the

observation density was set to ten observations, per time unit (i.e.Nobs= 10).

114



Chapter 7 COMPARISON WITH OTHER METHODS

0 10 20 30 40 50 60
1.5

1.6

1.7

1.8

θ es
t

T

0 10 20 30 40 50 60

0.6

0.8

1

1.2

σ2 es
t

T

(a) OU system

0 10 20 30 40 50 60
0.8

1

1.2

θ es
t

T

0 10 20 30 40 50 60

0.6

0.8

1

σ2 es
t

T

(b) DW system

Figure 7.16:Joint estimation:In (a) the drift and diffusion coefficient, of the OU system, are
estimated jointly. The left upper panel shows the results forθ, while the left lower panel forσ2.
The boxplots present summaries from thirty different observation realizations. (b) shows the same
joint estimation but for the DW system. The right upper panel shows the results for θ, while the
right lower panel forσ2. All results were obtained with theLP method (3’rd order) and fixed
observation density to two per time unit (Nobs= 2).
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Figure 7.17:Drift (conditional) estimation:This plot compares the increasing domain asymptotic
results (fixed observation density), when estimating theL3D drift parameter vector�. The sum-
mary results when seen horizontally compare the same drift parameter with different estimation
methods, while vertically the results are presented for the same estimation method and all three
parameters (σ, ρ andβ). The methods tested, from left to right are theLP algorithm (3’rd order),
the (full) weak-constrained 4D-Varand thedual UnKF accordingly. In all sub-plots the horizon-
tal dashed lines indicate the true values of the drift parameters that generated the history sample.
Where possible they-axiswas kept the same for all plots comparing the same parameter to make
the comparison easier.

7.5 Discussion

The methods implemented and presented here, cover all the main categories that deal with the

inference problem from a Bayesian perspective (Chapter 2). In exploring the infill and increasing
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Figure 7.18:Noise (conditional) estimation:Summary results (boxplots) when estimating jointly
the noise coefficientsσ2

x, σ2
y andσ2

z, of theL3D system. The results were obtained with theLP
method (3’rd order) and presented as functions of increasing time domain,keeping the observation
density fixed (Nobs= 18).
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Figure 7.19:Joint estimation:Summary results (boxplots) when estimating jointly the drift pa-
rametersσ, ρ andβ (upper three panels), and the system noise coefficientsσ2

x, σ2
y andσ2

z (lower
three panels), of theL3D system. The results were obtained with theLP method (3’rd order)
and are presented as functions of increasing time domain, keeping the observation density fixed
(Nobs= 10).

domain behaviour when estimating the parameters of the OU, DW and L3D, all methods show

biases and the response was different over the range of the systems.

The methods are largely comparable with the dual UnKF being less stable and slightly more

biased. LP and weak constraint 4D-Var are more comparable (since bothprovide smoothing solu-

tions to the inference problem) but there was no clear preference for a specific algorithm, except in
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the case of estimating the system noise parametersΣ. In this case both 4D-Var and UnKF failed

to provide satisfactory results, giving the LP a clear advantage. A particular difficult case is the

noise estimation of the L3D system where the process has to be observed very frequently. Yet it

is not clear whether this relates to the chaotic behaviour of the system ratherthe inability of the

variational algorithm to identify these parameters.

Comparing the results on the two asymptotic regimes reveals thatincreasing domainis more

promising thaninfill and suggests that in order to identify a model parameter, is better to observe

an event constantly over a large period of time, rather than observe it moredensely in a short pe-

riod of time. It should be emphasised that the results shown for these experiments are obtained by

applying the estimation algorithms on many realisations of the observation noise from a single tra-

jectory of each dynamical system. The way that these conclusions generalise for other trajectories

has yet to be answered.

An interesting question that is raised is how the parameter estimates are affected if the process

is not observed uniformly (at equidistant times), as was the case here, but rather with different

densities over different periods of time. An example, on a DW trajectory, would be the estimation

of the system noiseΣ by having more frequent observations around the transition time than the

rest of the sample path.
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Chapter 8 CONCLUSIONS

“As for me, all I know is that I know nothing.”
— Socrates, Greek philosopher.

8.1 Foreword

This thesis has developed two new algorithms for approximate inference in partially observed dif-

fusion processes, based on extending the recently proposed variational Gaussian process algorithm

(VGPA), in terms of radial basis functions (RBF) and local polynomial (LP) approximations. Both

extensions were tested on artificial datasets and are shown to converge tothe original VGPA al-

gorithm, given a sufficient number of basis functions or order of the polynomials, respectively.

Although simple in concept, the LP method is a natural extension of the RBF approximation and

from a theoretical point of view possess a more appropriate approximationof the variational pa-

rametersAt andbt . This was shown in practice where the number of optimised variables was

reduced even further than the RBF extension while retaining an excellent approximation of the

aforementioned parameters. This chapter concludes the thesis by summarising some key points of

each chapter. At the end some further research directions are discussed along with the limitations

of the proposed algorithms.

8.2 Summary

Stochastic differential equations have gained increasing attention the last decades, applied to the

modelling of real world systems with many applications in physics, finance, environmental sci-

ences, engineering and systems biology. Typically they describe the temporal evolution of a state

vector of a dynamical system based on the (assumed) physical laws of thereal system, including

a driving noise process. The noise process can be thought of in various ways. It often repre-

sents processes not included in the model, but present in the real system.Chapter 1, describes

briefly the difference between modelling a system with ordinary and stochastic differential equa-

tions. Moreover the rational for adopting a Bayesian paradigm for the developed algorithms is

also highlighted.

The important class of diffusion processes is reviewed in Chapter 2, which can be seen as solu-

tions of the aforementioned SDEs. Some basic definitions on stochastic processes are given with a

few fairly simple examples and then the inference problem, addressed in this thesis, is explained.

It is made clear why the estimation of model parameters with the classical Maximum-Likelihood

estimation framework is a challenging task and how this leads to the development of approximate

estimation techniques to tackle this problem. The relevant literature is reviewed,mainly from a

Bayesian perspective, although for the sake of completeness the major non-Bayesian techniques
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are also highlighted.

Chapter 3 summarises and describes the dynamical systems that were chosen to test the algo-

rithms developed. These vary from univariate linear (OU), to forty dimensional non-linear (L40D).

The model equations of each system are defined properly and characteristic examples are given.

Providing approximate solutions to very difficult problems is not a new idea in Machine Learn-

ing. Chapter 4 describes an algorithm for approximate inference in partiallyobserved diffusion

processes, following the variational paradigm which approximates an intractable probability dis-

tribution ’pt ’ by another one ’qt ’ that belongs to a family of tractable distributions. This is done

by minimising the KL[qt∥pt ] divergence (Kullback and Leibler, 1951), between the true posterior

process and the approximate one (i.e. between probability measures over continuous time sample

paths). Unlike most other variational methods, a fully factorized posterior densityq(x) = ∏i qi(xi)

(such as the one assumed by theNaive Mean Fieldtheory), does not make sense in an infinite

(Markovian) setting. Moreover, as argued in Apte et al. (2007) it is preferable and mathemati-

cally correct to define the inference problem in an infinite dimensional (space of sample paths)

setting and then look for efficient ways to discretise it. If the discretisation occurs first, so that

the inference problem is never written down in continuous time, it may lead to a non-optimal

approximation of the required infinite dimensional problem.

Another issue which relates to the Gaussian processes approximation, assumed by the varia-

tional framework presented here, is the ability of the proposed algorithm to perform prediction.

To be more precise, the current approximation algorithm performs smoothingwithin a predefined

time window of inferenceT = [t0, t f ], given a finite set of discrete noisy observations. However, in

the absence of observations the variational algorithm here seems to stick to one mode of the (true)

posterior distribution. An example can be seen in the stochastic DW case (seeFigure 7.5(a)),

where in the absence of observations the VGPA algorithm remains in one wellof the system, not

being able to “see” the other well, due to the uni-modal approximation and its uncertainty remains

fixed. On the contrary the HMC algorithm Figure 7.5(b), when tested on the same dataset, after

the last observation is “unsure” of where it should be therefore returns to the true mean of the

system (xt = 0), and its variance diffuses in both wells.

The continuous time inference problem, as discussed above, when discretised results in a set

of discrete time variables that need to be optimised, during the minimisation of the KL divergence.

In order to reduce the number of variables that need to be optimised and control the complexity

of the algorithm Chapters 5 and 6, introduce two new approximation of the VGPA algorithm.

The former, in terms of basis function expansions defined on the whole time window of inference

and the latter in terms of polynomials defined locally between each pair of observations. Both

frameworks are derived and presented for the general multivariate case and their convergence
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properties, compared to the original VGPA algorithm, are examined on a rangeof dynamical

systems as defined in Chapter 3. The general message, from both extensions, is that they are

able to well approximate the results of the VGPA and also have beneficial characteristics when

estimating the SDE parameters. It is shown that when estimating the drift parameters (single

point estimates), the bound on the marginal likelihood (from the free energy) does not need to

be very tight. Therefore, a relatively low order parametrisation of the newextensions can be used

where the number of optimised parameters is lower than within the original variational framework.

However, for the estimation of the system noise, which is also of great importance, a more accurate

bound on the marginal likelihood must be provided.

In comparing the two new extensions, the LP method seems more appropriate forestimating

the variational parametersAt andbt , mainly due to the way that the polynomials are defined. As

shown in Figure 6.2, these variational parameters are discontinuous at observation times. This

effect resulted in the requirement for a high number of basis functions in the RBF extension to

capture this roughness. In contrast, the local polynomials do not face thesame problem because

they can be defined only between each pair of observations, thereforereducing the number of

coefficients that need to be estimated even further.

Finally, to present a more complete study, the methods here are compared against other well

known estimation techniques that cover all the main categories that deal with theBayesian in-

ference problem. For state estimation a range of ensemble and unscented Kalman filters and

smoothers are implemented along with standard Gaussian process regression smoothers and re-

sults are given in Chapter 7.3. The application of the methods to toy example systems is very

promising. On the one hand, the variational approach employed here is consistent, i.e. the so-

lution is identical to the exact solution when the stochastic process is a Gaussian one (e.g. OU

system). On the other hand, the method is able to cope with strongly non-linear systems (e.g. DW

system), in contrast to most approximate state-of-the-art techniques. Forthe case of parameter es-

timation the LP approach is compared against a powerful hybrid Monte Carlosampling algorithm,

a weak constraint formulation of 4D-Var (well known in the data assimilation community) and a

fast dual estimation technique based on the unscented Kalman filter. The estimation of parameters

is examined asymptotically in two different regimes:(a) infill asymptotics, where the time win-

dow is fixed and the density of the observations increases and(b) increasing domain asymptotics,

where the observation density remains fixed but the time window increases. Of course the word

“asymptotic” here is slightly an abused term because the results are experimental and not theoret-

ical. Therefore, the limits whereNobs→ ∞ andT → ∞ are practically never reached. The results

are biased, however these are in accordance with the HMC posterior sampling approach, where in

most cases is assumed to provide the reference solution.
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8.3 Future directions

∙ Multiplicative noise – Although the original variational Bayesian algorithm (Chapter 4),

along with the two new extensions presented in Chapters (5 and 6), are defined on a Gaussian

process approximation to the posterior process, in fact this Gaussian assumption restricts the

applicability of the algorithm and suggests further research directions which interest the au-

thor. The algorithms presented and developed here assume additive noise(Σ) in the process.

However, a more realistic approach would be to treat systems where the noise varies with

the states of the system (i.e.Σ(xt)). This case, of multiplicative noise, cannot be treated un-

der the current framework. The reason is that if the noise in the true process is assumed state

depended then also the approximate process must be modelled by the same noise function

(remember that if the two processespt andqt do not have the same noise coefficient then

the KL[qt∥pt ] divergence is infinite). However, this would result in an approximate process

that is guaranteed to be non-Gaussian (the product of two random variables, even if both of

them are Gaussian, is not Gaussian). Therefore, different families ofapproximate processes

must be sought.

∙ Higher order solutions for the SDE – To perform numerical simulations the continuous

time framework of Chapter 4, has to be discretised. While the use of the standard Euler-

Maruyama discretisation method here simplifies the presentation of the algorithm at the

same time it imposes a small time stepδt if good accuracy is to be achieved. This makes

the problem more computationally demanding because a larger number of parameters has

to be inferred. Nevertheless, the choice of the time discretisation is not unique. The impact

of using different time discretisations, such as the Milstein scheme (Kloeden and Platen,

1999), is an open problem.

∙ Application to very high dimensional systems– So far the variational methods presented

here can be applied only to toy models, or relatively low dimensional systems. The appli-

cation of the algorithms to real dynamical systems with many degrees of freedom, such as

the ones used for numerical weather prediction (Kalnay, 2003), is a challenge. The LP ap-

proximation algorithm (Chapter 6), reduces the number of optimising variablesby 60% in

most of the cases tested here (comparing to the original VGPA). Therefore, a step towards

the direction of treating very high dimensional system was taken. Another benefit of the

current variational framework is that one can control further the approximation (linear drift

function of the approximate processgL(xt)), by imposing a specific structure to the linear

parameter in the driftAt . This direction has to be further explored.
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∙ R→ 0 asymptotic behaviour– Chapter 7 compares the local polynomial extension with a

range of other well known estimation techniques, on estimating the (hyper-) parameters of

the tested SDEs, on two different asymptotic regimes. In the first case the time window of

inferenceT, is kept fixed and the number of observationsNobs increases. The second case

keeps the distance between the observations fixed and the time window increases. Of the

two examples the latter (i.e. increasing domain asymptotics), proved experimentally more

appropriate in estimating the model parameters. In both cases the error levelon the obser-

vations was kept fixed to a relatively small value (compared to the total spaceor manifold

that the stochastic process occupies). However, another interesting asymptotic regime is

that of keeping the time window and the density of the observations fixed and letting the

observation noise vary. It has been observed that in the extreme case where the noise on the

observations is very high, the algorithms perform poorly when estimating the states of the

system. The question that arises naturally is how the estimation of the parametersis affected

for different levels of the observation noise.

∙ Observation operator and noise assumptions– Usually, to keep the notation and the pre-

sentation of an algorithm simple two important assumptions take place that should not be

restrictive in the range of the applications that can be covered by the proposed algorithm.

These are(a) a linear observation operatorh(⋅) and (b) independent and identically dis-

tributed (i.i.d.) observations corrupted by Gaussian noise. In this thesis the same assump-

tions were also followed with the addition that the observations were further assumed direct

measurements of the true system states (i.e.h(xt) = xt), when validating the algorithms on

artificial datasets, although the original VGPA framework does not restrict the observation

operator to be linear. Nevertheless, if the algorithms are to be tested on realobservations

then the methods developed here must be able to treat non-linear observation functions. The

second issue that deals with non-Gaussian error statistics for the observables is more of a

general statement, because in practice the Gaussian distribution models the errors in the

observations adequately.

∙ Computational issues– The future directions related to computational issues are three-fold.

The first has to do with the optimisation method that was chosen to solve the constraint op-

timisation problem of minimising the KL divergence to make the algorithm converge to

its optimal posterior process. In the description of the VGPA algorithm in Chapter 4, the

approximation problem was formulated in a Lagrangian framework, where the necessary

ordinary differential equations that give the predictive marginal (at time ’t’) mean and vari-

ance (i.e.ṁt andṠt), were constraints to be satisfied. Therefore, a Lagrangian cost function
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was formulated (Equation 4.14) and its stationary points were to be determined.That for-

mulation inevitably introduced more parameters (i.e. the Lagrange multipliersΨt and�t),

which also need to be estimated. Emphasis in this thesis was given to finding approximate

solutions of the original VGPA, rather than proposing a new algorithm. However, a new

formulation of the original variational parameter might have beneficial characteristics by

avoiding the need to compute more parameters.

The second issue is related to the previous one and has to do with the way thatthe marginal

means and covariances are calculated. Ideally, the ODEs (Equations 4.12and 4.13) that

provide these quantities should be solved in continuous time. However, as shown in Ap-

pendix E, these ODEs do not have a closed form solution, therefore numerical methods

required in obtaining the marginal mean and variance, at time ’t’. In the current framework

a forward sweepsolves the ordinary differential equations, given a fixed set of values, of

the variational parametersAt andbt . The LP approximation, under this setting, provides

slightly more accurate solutions by applying high order integration methods, such as the

Runge-Kutta 2’nd order, without approximating the necessary mid-points that required by

the integration scheme. Meanwhile, the solution of these ODEs is time-consuming and in

very high dimensional systems almost impossible because the matrix giving the marginal

covarianceSt (of size D×D, whereD is the systems dimension) has to be updated for

each discrete time. Therefore, an alternative re-parametrisation of the original variational

framework might also allow a more efficient way of computing these quantities.

The last issue relates to the LP approximation extension. As was shown, in almost all the

cases where the LP algorithm compared with the original VGPA, the latter was computa-

tionally more efficient not only in actual execution time but also in the number of iterations

that both algorithms need to converge. The (slightly) higher number of iterations in the op-

timisation routine can be explained by the fact that the LP approximation tries to constrain

the available functions accepted as solutions, therefore it might take more iterations until a

solution satisfies this criterion. On the other hand the original VGPA is free to optimise all

the parameters unconditionally. The speed of actual execution time was not possible to cap-

ture accurately because all the simulations took place on different machines(or computer

clusters), for which the author had no control over the other processes that run on these ma-

chines. Nevertheless, in practice the LP extension is slower in its present implementation

due to the fact that the gradients of the cost function with respect to the optimised param-

eters are computed serially (i.e. for each sub-interval separately). Moreover, the algorithm

could benefit from a parallel implementation of these computations because in theory these
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gradients are not dependent to each other.

∙ Implementation – Although it may seem of less importance, the practical application and

broad acceptance of a newly proposed algorithm relies in its ease of implementation. Cur-

rently the VGPA algorithm, including the two new extensions (RBF and LP), remains quite

complex. The pseudocode given in Chapter 4 sketches the outline of both state and param-

eter estimation procedures. A MATLAB implementation is available, however further work

is necessary in order to provide more guidance and make the algorithms more generic and

easily applicable.

8.4 Epilogue

The methods developed here propose a novel variational Bayesian treatment of the dynamic data

assimilation problem. The initial motivation (and desire) is to make the algorithms applicable and

computationally efficient to very high dimensional real-world dynamical systems. These dynam-

ical models are currently treated deterministically, although there is increasingappreciation that

a full stochastic treatment is necessary for progress to be made on probabilistic forecasting. This

work is a promising step towards methods that will be able to treat such large, complex models in

a fully probabilistic way. This concludes the thesis.
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A Derivations of the VGPA

framework

This Appendix derives the necessary equations for the formulation of thevariational Gaussian

process approximation to the posterior distribution over paths, for partially observed diffusion

processes, as introduced in Chapter 4. The expressions here are presented in a generic format

leaving the system specific derivations, for the systems studied in this thesis,to be given later (see

Appendix D).

A.1 Basic setting

In order to fix ideas and make the derivations more clear the basic setting is introduced first on

which the variational approximation framework is based on. Consider a finiteset ofd-dimensional

noisy observations{yk}Kk=1, that are generated by aD-dimensional latent processxt .

It is assumed that the time evolution of thisD-dimensional stochastic processxt is described

by an Itô stochastic differential equation (SDE):

dxt = f�(t,xt) dt+Σ
1/2dwt , dwt ∼N (0,dtI) (A.1)

wherext ∈ ℜD is the (latent) state vector,f�(t,xt) ∈ ℜD is (usually) a non-linear function,Σ =

diag{σ2
1,σ2

2, . . . ,σ2
D} is the system noise covariance matrix and{wt}t∈T is the standardD dimen-
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sionalWiener process. A discrete version of (A.1) can be provided by the Euler-Maruyama repre-

sentation of a SDE. Hence:

δxk ≡ xk+1−xk = f�(xk)δt +
√

δtΣ�k , (A.2)

whereδt is a positive finite real number representing the time increment and�k ∼ N (0, I). As

δt→ 0 this becomes equivalent to the continuous time version (A.1).

In a Bayesian framework, the posterior measure in the presence of independent and identically

distributed (i.i.d.) observations is given by:

dppost

dpsde
=

1
Z
×

K

∏
k=1

p(yk∣xtk) , (A.3)

using the Radon-Nikodym notation, whereK denotes the number of noisy observations andZ is

the normalisation constant, or marginal likelihood, or evidence (i.e.Z = p(y1:K)). As usual, the

multivariate Gaussian likelihood is given by:

p(yk∣xtk) = N (yk∣h(xtk),R) , (A.4)

whereh(⋅) : ℜD 7→ ℜd is a general non-linear transformation between the latent state vectorxtk

and the observationyk andR ∈ℜd×d is the noise covariance matrix related to the observables.

A more thorough study and presentation of stochastic differential equations, as well as dif-

ferent discretisation schemes, can be found in many text-books. Here are cited three of the most

commonly used (Kloeden and Platen, 1999; Øksendal, 2000; Gardiner, 2003).

A.2 Approximate Inference

The variational free energy, is defined as follows:

F (q(x),�,Σ) =−
〈

ln
p(y,x∣�,Σ)

q(x∣Σ)

〉

qt

(A.5)

wherep(⋅) is the true posterior process of the system,q(⋅) is the one that is used as an approxi-

mation and time indices have been dropped for notational simplicity. Alsox = {xt , t0 ≤ t ≤ t f }
represents here the path of a continuous timeD-dimensional stochastic process and⟨⋅⟩q indicates

the expectation with respect to processq(⋅).
Alternatively, the variational free energy can be seen as the KL divergence between the ap-

proximate processq(x) and the joint distribution of the latent states and the observations of the
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true systemp(y,x), as follows:

F (q(x),�,Σ) =−
〈

ln
p(y,x∣�,Σ)

q(x∣Σ)

〉

qt

(A.6)

=−
∫

q(x) ln
p(y,x)
q(x)

dx (A.7)

=
∫

q(x) ln
q(x)

p(y,x)
dx (A.8)

= KL [q(x)∥p(y,x)] , (A.9)

where the conditioning on the (hyper-) parameters� andΣ has been omitted for notational sim-

plicity.

The free energy provides an upper bound to the negative marginal log-likelihood. Starting

with theproduct ruleof probabilities, this is:

p(x,y) = p(x∣y)p(y)⇒ (A.10)

p(y) =
p(x,y)
p(x∣y) , (A.11)

after applying the natural logarithm on both sides of Equation (A.11), it yields:

ln p(y) = ln
p(x,y)
p(x∣y) (A.12)

= ln p(x,y)− ln p(x∣y) , (A.13)

then adding and subtracting the same quantity, by introducing a new distributionq(x), results:

− ln p(y) = ln p(x∣y)− ln p(x,y) (A.14)

= ln p(x∣y)− lnq(x)− ln p(x,y)+ lnq(x) (A.15)

= ln
p(x∣y)
q(x)

− ln
p(x,y)
q(x)

. (A.16)

Multiplying both sides byq(x) we have:

−q(x) ln p(y) = q(x) ln
p(x∣y)
q(x)

−q(x) ln
p(x,y)
q(x)

, (A.17)

and then integrating overx yields:

−
∫

q(x) ln p(y)dx =
∫

q(x) ln
p(x∣y)
q(x)

dx−
∫

q(x) ln
p(x,y)
q(x)

dx⇒ (A.18)

− ln p(y) = KL [q(x)∥p(x,y)]−KL [q(x)∥p(x∣y)] . (A.19)

Sincep(y) has no dependency onx which leads to:

− ln p(y∣�,Σ) = F (q(x),�,Σ)−KL [q(x∣Σ)∥p(x∣y,�,Σ)] (A.20)

≤ F (q(x),�,Σ) , (A.21)

because by definition KL≥ 0. Note that the conditioning on the (hyper-) parameters� andΣ is

added here for later clarity.
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A.2.1 Optimal approximate posterior process

An approximate time-varying Gaussian process is defined, with the same diffusion coefficient (Σ)

as the process which is approximated. This process is governed by the following linear SDE:

dxt = gL(xt) dt+Σ
1/2dwt , dwt ∼N (0,dtI) (A.22)

where the linear drift is defined as:gL(xt) = −Atxt + bt , with At ∈ ℜD×D andbt ∈ ℜD. Note

that both parametersAt andbt , are time dependent functions to account for the non-stationarity

induced by the observations. It is anticipated, that the Gaussian marginal at time ’t ’ is defined as

follows:

q(xt ∣Σ) = N (xt ∣mt ,St) , (A.23)

(henceforthqt), wheremt ∈ℜD andSt ∈ℜD×D, are respectively the marginal mean and marginal

covariance at time ’t ’. The derivation of the free energy leads to the following result:

F (q(x),�,Σ) = KL [q0∥p0]+
∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt (A.24)

whereδ(⋅) is Dirac’s delta function, KL[q0∥p0] is a shorthand notation for the KL at the initial

state (i.e. KL[q(x0)∥p(x0)]) and the energy functions are defined in equations (A.51) and (A.57)

below:

Proof: From Equation (A.9) we have:

F (q(x),�,Σ) = KL [q(x)∥p(y,x)] (A.25)

=
∫

q(x) ln
q(x)

p(y,x)
dx (A.26)

=
∫

q(x) ln
q(x)

p(y∣x)p(x)dx (A.27)

=
∫

q(x) ln
q(x)
p(x)

dx
︸ ︷︷ ︸

(I1)

−
∫

q(x) ln p(y∣x)dx
︸ ︷︷ ︸

(I2)

(A.28)

I1: This integral is simply the KL divergence between the approximate prior processq(x) and

the true prior processp(x) defined in (A.1). Alternatively, this integral can be written as:

KL [q(x)∥p(x)] =
∫

q(x) ln
q(x)
p(x)

dx . (A.29)

However, to make the derivation more clear the above notation will change to the one that follows

to emphasise the discretisation of the sample paths on the time interval (note a continuous time
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derivation is also possible).

KL [q(x0:N)∥p(x0:N)] =
∫
. . .

∫
q(x0:N) ln

q(x0:N)

p(x0:N)
dx0:N (A.30)

=
∫
. . .

∫
q(x0:N) ln

q(x0)∏N−1
j=0 q(x j+1∣x j)

p(x0)∏N−1
j=0 p(x j+1∣x j)

dx0:N (A.31)

=
∫
. . .

∫
q(x0:N) ln

q(x0)

p(x0)
dx0:N +

∫
. . .

∫
q(x0:N) ln

N−1

∏
j=0

[
q(x j+1∣x j)

p(x j+1∣x j)

]

dx0:N

(A.32)

=
∫

q(x0) ln
q(x0)

p(x0)
dx0

︸ ︷︷ ︸

KL [q0∥p0]

+
∫
. . .

∫
q(x0:N) ln

N−1

∏
j=0

[
q(x j+1∣x j)

p(x j+1∣x j)

]

dx0:N (A.33)

= KL [q0∥p0]+
∫
. . .

∫
q(x0:N) ln

N−1

∏
j=0

[
q(x j+1∣x j)

p(x j+1∣x j)

]

dx0:N (A.34)

= KL [q0∥p0]+
∫
. . .

∫
q(x0)

N−1

∏
i=0

q(xi+1∣xi)
N−1

∑
j=0

ln
q(x j+1∣x j)

p(x j+1∣x j)
dx0:N (A.35)

This result is due to the fact that both processes are Markovian. Hence, their marginal distributions

can be factorised as a product of conditional distributions (i.e. the transition probabilities):

q(x0:N) = q(x0)
N−1

∏
i=0

q(xi+1∣xi) . (A.36)

The same is true forp(x0:N). Continuing the derivation one obtains:

KL [q∥p] = KL [q0∥p0]+
N−1

∑
j=0

∫
. . .

∫ N−1

∏
i=0

q(xi+1∣xi) ln
q(x j+1∣x j)

p(x j+1∣x j)
dx1:N (A.37)

= KL [q0∥p0]+

N−1

∑
j=0

∫
. . .

∫ j

∏
k=1

q(xk∣xk−1)q(x j+1∣x j) ln
q(x j+1∣x j)

p(x j+1∣x j)

N−1

∏
m= j+1

q(xm+1∣xm)dx1:N . (A.38)

At this point the following substitution takes place:

∫
. . .

∫ j

∏
k=1

q(xk∣xk−1)dx1: j−1 = q(x j) , (A.39)

since this is equal to the marginal distributionq(x j). Therefore:

KL [q∥p] = KL [q0∥p0]+
N−1

∑
j=1

∫
. . .

∫
q(x j)q(x j+1∣x j) ln

q(x j+1∣x j)

p(x j+1∣x j)

N−1

∏
m= j+1

q(xm+1∣xm)dx j:N

(A.40)

A careful look on the right hand side, of the previous expression, after the

[

ln q(x j+1∣x j )
p(x j+1∣x j )

]

, reveals a

set of integrals that evaluate to one. That is:

∫
q(x j+2∣x j+1)dx j+2

︸ ︷︷ ︸

= 1

∫
q(x j+3∣x j+2)dx j+3

︸ ︷︷ ︸

= 1

⋅ ⋅ ⋅
∫

q(xN∣xN−1)dxN
︸ ︷︷ ︸

= 1

.
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So we are left with the following expression:

KL [q∥p] = KL [q0∥p0]+
N−1

∑
j=1

∫
q(x j)

∫
q(x j+1∣x j) ln

q(x j+1∣x j)

p(x j+1∣x j)
dx j+1

︸ ︷︷ ︸

KL[q(x j+1∣x j )∣∣psde(x j+1∣x j )]

dx j (A.41)

= KL [q0∥p0]+
N−1

∑
j=1

∫
q(x j)KL [q(x j+1∣x j)∥psde(x j+1∣x j)]dx j (A.42)

= KL [q0∥p0]+
N−1

∑
j=1

〈

KL [q(x j+1∣x j)∥psde(x j+1∣x j)]

〉

q(x j )

. (A.43)

The above KL divergence, provided that both processesp andq are Gaussians, is given by the

following formula (Rasmussen and Williams, 2006, Mathematical Appendix):

KL [q(x j+1∣x j)∥p(x j+1∣x j)] =
1
2

ln ∣ΣpΣ
−1
q ∣+

1
2

tr

[

Σ
−1
p

(

(mp−mq)(mp−mq)
⊤+Σp−Σq

)]

. (A.44)

From equations (A.1) and (A.22) one can see a critical assumption; that both processes have

the same system noise covarianceΣ. Hence the following substitution is made to the previous

expression:Σp =Σq =Σ.

KL [q(x j+1∣x j)∥p(x j+1∣x j)] =
1
2

ln ∣ΣΣ
−1∣

+
1
2

tr

[

Σ
−1
(

(mp−mq)(mp−mq)
⊤+Σ−Σ

)]

(A.45)

=
1
2

ln ∣I ∣
︸ ︷︷ ︸

= 0

+
1
2

tr

[

Σ
−1
(

(mp−mq)(mp−mq)
⊤
)]

(A.46)

=
1
2

tr

[

Σ
−1
(

(f�(x j+1)−gL(x j+1))(f�(x j+1)−gL(x j+1)
⊤)

)]

δt

(A.47)

=
1
2

[

(f�(x j+1)−gL(x j+1))
⊤
Σ
−1(f�(x j+1)−gL(x j+1))

]

δt (A.48)

Therefore for the whole discretised pathpsde it holds:

KL [q∥p] = KL [q0∥p0]+
1
2

N−1

∑
k=1

〈

(f�(xk)−gL(xk))
⊤
Σ
−1(f�(xk)−gL(xk))

〉

qk

δt . (A.49)

And in the limit of δt→ 0:

KL [q∥psde] = KL [q0∥p0]+
1
2

∫ t f

t0

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

dt . (A.50)

The energy from the SDE is thus given by the following expression:

Esde(t) =
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

(A.51)
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Then the computation of the log-likelihood follows, noting that this is now formulated in

continuous time. This is done to simplify the computation of the integral I2, as shown below.

ln p(yt ∣xt) = ln

(

N (yt ∣h(xt),R)

)

(A.52)

= ln

(

(2π)−
d
2 ∣R∣− 1

2 exp

{

−1
2
(yt −h(xt))

⊤R−1(yt −h(xt))

})

(A.53)

=−d
2

ln(2π)− 1
2

ln ∣R∣− 1
2
(yt −h(xt))

⊤R−1(yt −h(xt)) . (A.54)

I2: Finally, this integral becomes:

∫
q(xt) ln p(yt ∣xt)dxt =−

d
2

ln(2π)− 1
2

ln ∣R∣−
1
2

∫
q(xt)

(

(yt −h(xt))
⊤R−1(yt −h(xt))

)

dxt (A.55)

=−d
2

ln(2π)− 1
2

ln ∣R∣− 1
2

〈

(yt −h(xt))
⊤R−1(yt −h(xt))

〉

qt

. (A.56)

Thus the energy from the observations, at time ’t’, is the given by:

Eobs(t) =
1
2

〈

(yt −h(xt))
⊤R−1(yt −h(xt))

〉

qt

+
d
2

ln(2π)+
1
2

ln ∣R∣ , (A.57)

wherey = {yt , t0 ≤ t ≤ t f } ∈ ℜd is a continuous-time observable process. The discrete time

nature of the actual observations adds the delta function in equation (A.24).

A.2.2 Smoothing algorithm

The time evolution of the Gaussian measure Eq. (A.23) can be described by aset of ordinary

differential equations. These follow from Equation (A.22), and given inEq. (A.58) and (A.59).

ṁt =−Atmt +bt (A.58)

Ṡt =−AtSt −StA⊤t +Σ (A.59)

whereṁt andṠt are shorthand notations fordmt
dt and dSt

dt , respectively.

ODEs of the means (with respect to timet) :

dmt = ⟨xt +dxt⟩−⟨xt⟩ (A.60)

= ⟨xt⟩+ ⟨dxt⟩−⟨xt⟩ (A.61)

= ⟨dxt⟩ (A.62)

=
〈

gL(xt)dt+Σ
1/2dwt

〉

(A.63)

= ⟨gL(xt)⟩dt+Σ
1/2⟨dwt⟩ (A.64)

(continues to A.65)
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= ⟨−Atxt +bt⟩dt (A.65)

=−At ⟨xt⟩dt+btdt (A.66)

=−Atmtdt+btdt (A.67)

wheredxt has been replaced with(gL(xt)dt+Σ
1/2dwt), from Eq. (A.22), and⟨dwt⟩= 0.

ODEs of the variances (with respect to timet) :

dSt =
〈

(xt −mt +dxt −dmt)(xt−mt +dxt −dmt)
⊤
〉

−
〈

(xt −mt)(xt −mt)
⊤
〉

(A.68)

=
〈

(xt −mt +dxt −dmt)(x⊤t −m⊤t +dx⊤t −dm⊤t )
〉

−St (A.69)

=
〈

xtx⊤t −xtm⊤t +xtdx⊤t −xtdm⊤t
〉

+
〈

−mtx⊤t +mtm⊤t −mtdx⊤t +mtdm⊤t
〉

+
〈

dxtx⊤t −dxtm⊤t +dxtdx⊤t −dxtdm⊤t
〉

+
〈

−dmtx⊤t +dmtm⊤t −dmtdx⊤t +dmtdm⊤t
〉

−St (A.70)

=
〈

xtx⊤t
〉

−
〈

xtm⊤t
〉

+
〈

xtdx⊤t
〉

−
〈

xtdm⊤t
〉

+
〈

−mtx⊤t
〉

+
〈

mtm⊤t
〉

−
〈

mtdx⊤t
〉

+
〈

mtdm⊤t
〉

+
〈

dxtx⊤t
〉

−
〈

dxtm⊤t
〉

+
〈

dxtdx⊤t
〉

−
〈

dxtdm⊤t
〉

+
〈

−dmtx⊤t
〉

+
〈

dmtm⊤t
〉

−
〈

dmtdx⊤t
〉

+
〈

dmtdm⊤t
〉

−St (A.71)

= mtm⊤t +St −mtm⊤t −mtm⊤t A⊤t dt−StA⊤t dt+mtb⊤t dt+

mtm⊤t A⊤t dt−mtb⊤t dt−mtm⊤t +mtm⊤t +mtm⊤t A⊤t dt−

mtb⊤t dt−mtm⊤t A⊤t dt+mtb⊤t dt−Atmtm⊤t dt−

AtStdt+btm⊤t dt+Atmtm⊤t dt−btm⊤t dt+Σdt+

Atmtm⊤t dt−btm⊤t dt−Atmtm⊤t dt+btm⊤t dt+O(dt2) (A.72)

=−AtStdt−StA⊤t dt+Σdt+O(dt2) , (A.73)

Note that in Eq. (A.59) have been neglected terms beyond first order indt. For the above deriva-

tions the following expectations (with respect to the approximate processqt) have been used:
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〈

xtx⊤t
〉

= mtm⊤t +St (A.74)
〈

xtm⊤t
〉

= mtm⊤t (A.75)
〈

xtdm⊤t
〉

=
〈

xt(−Atmtdt+btdt)⊤
〉

(A.76)

=
〈

xt(−m⊤t A⊤t +b⊤t )dt
〉

(A.77)

=
〈

−xtm⊤t A⊤t
〉

dt+
〈

xtb⊤t
〉

dt (A.78)

=−mtm⊤t A⊤t dt+mtb⊤t dt (A.79)
〈

mtx⊤t
〉

= mtm⊤t (A.80)
〈

mtm⊤t
〉

= mtm⊤t (A.81)
〈

mtdx⊤t
〉

= mt

〈

dx⊤t
〉

(A.82)

= mt(−Atmtdt+btdt)⊤ (A.83)

= mt(−m⊤t A⊤t dt+b⊤t dt) (A.84)

=−mtm⊤t A⊤t dt+mtb⊤t dt (A.85)
〈

mtdm⊤t
〉

= mt

〈

(−Atmt +bt)
⊤
〉

dt (A.86)

= mt

〈

−m⊤t A⊤t +b⊤t
〉

dt (A.87)

=−mtm⊤t A⊤t dt+mtb⊤t dt (A.88)
〈

dxtdx⊤t
〉

=
〈

(gL(xt)dt+Σ
1/2dwt)(gL(xt)dt+Σ

1/2dwt)
⊤
〉

(A.89)

=
〈

(gL(xt)dt+Σ
1/2dwt)(gL(xt)

⊤dt+dw⊤t Σ
1/2)

〉

(A.90)

=
〈

gL(xt)gL(xt)
⊤
〉

(dt2)
︸ ︷︷ ︸

O(dt2)

+
〈

gL(xt)dtdw⊤t Σ
1/2

〉

︸ ︷︷ ︸

= 0

+
〈

Σ
1/2dwtgL(xt)

⊤dt
〉

︸ ︷︷ ︸

= 0

+
〈

Σ
1/2dwtdw⊤t Σ

1/2
〉

(A.91)

=Σ
1/2

〈

dwtdw⊤t
〉

︸ ︷︷ ︸

= dtI

Σ
1/2+O(dt2) (A.92)

=Σ
1/2dtIΣ1/2+O(dt2) (A.93)

= dtΣ+O(dt2) (A.94)
〈

dxtdm⊤t
〉

=
〈

(gL(xt)dt+Σ
1/2dwt)(−Atmtdt+btdt)⊤

〉

(A.95)

= 0+O(dt2) (A.96)
〈

dmtdx⊤t
〉

=
〈

(−Atmtdt+btdt)(gL(xt)dt+Σ
1/2dwt)

⊤
〉

(A.97)

= 0+O(dt2) (A.98)
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〈

dmtdm⊤t
〉

=
〈

(−Atmtdt+btdt)(−Atmtdt+btdt)⊤
〉

(A.99)

= O(dt2) (A.100)
〈

dmtm⊤t
〉

=
〈

(−Atmtdt+btdt)m⊤t
〉

(A.101)

=−Atmtm⊤t dt+btm⊤t dt (A.102)
〈

dmtx⊤t
〉

=
〈

(−Atmtdt+btdt)x⊤t
〉

(A.103)

=−Atmtm⊤t dt+btm⊤t dt (A.104)
〈

dxtm⊤t
〉

= ⟨dxt⟩m⊤t (A.105)

=−Atmtm⊤t dt+mtm⊤t dt (A.106)
〈

dxtx⊤t
〉

=
〈

(gL(xt)dt+Σ
1/2dwt)x⊤t

〉

(A.107)

=
〈

gL(xt)x⊤t dt+Σ
1/2dwtx⊤t

〉

(A.108)

=
〈

gL(xt)x⊤t
〉

dt+Σ
1/2

〈

dwtx⊤t
〉

︸ ︷︷ ︸

= 0

(A.109)

=
〈

(−Atxt +bt)x⊤t
〉

dt (A.110)

=−At

〈

xtx⊤t
〉

dt+bt

〈

x⊤t
〉

dt (A.111)

=−Atmtm⊤t dt−AtStdt+btm⊤t dt (A.112)
〈

xtdx⊤t
〉

=
〈

xt(gL(xt)dt+Σ
1/2dwt)

⊤
〉

(A.113)

=
〈

xtgL(xt)
⊤dt+xtdw⊤t Σ

1/2
〉

(A.114)

=
〈

xtgL(xt)
⊤
〉

dt+
〈

xtdw⊤t
〉

Σ
1/2

︸ ︷︷ ︸

= 0

(A.115)

=
〈

xt(−Atxt +bt)
⊤
〉

dt (A.116)

=−
〈

xtx⊤t
〉

A⊤t dt+ ⟨xt⟩b⊤t dt (A.117)

=−mtm⊤t A⊤t dt−StA⊤t dt+mtb⊤t dt (A.118)

Lagrangian cost function

In order to ensure that constraints (A.58) and (A.59), are satisfied, thefollowing Lagrangian is

formulated:

L = F (q,�,Σ)−
∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt−

∫ t f

t0
tr{Ψt(Ṡt +AtSt +StA⊤t −Σ)}dt , (A.119)

where�t ∈ℜD andΨt ∈ℜD×D are time dependent Lagrange multipliers, withΨt being symmet-

ric.
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Taking the functional derivative of (A.119) w.r.t.At yields:

∇At L = ∇At

(

F (q,�,Σ)−
∫ t f

t0
tr{Ψt(Ṡt +AtSt +StA⊤t −Σ)}dt

−
∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt

)

(A.120)

= ∇At F (q,�,Σ)−∇At

∫ t f

t0
tr{Ψt(Ṡt +AtSt +StA⊤t −Σ)}dt

−∇At

∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt (A.121)

= ∇At

(∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt+KL [q0∥p0]

)

−2∇At

∫ t f

t0
tr{ΨtAtSt}dt−∇At

∫ t f

t0
�⊤t Atmtdt (A.122)

= ∇At Esde(t)−2ΨtSt −�tm⊤t (A.123)

where facts thatΨt andSt are symmetric has been used.

In a similar way, the functional derivative of (A.119) w.r.t.bt is:

∇bt L = ∇bt

(

F (q,�,Σ)−
∫ t f

t0
tr{Ψt(Ṡt +AtSt +StA⊤t −Σ)}dt

−
∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt

)

(A.124)

= ∇bt F (q,�,Σ)−∇bt

∫ t f

t0
tr{Ψt(Ṡt +AtSt +StA⊤t −Σ)}dt

−∇bt

∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt (A.125)

= ∇bt

(∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt+KL [q0∥p0]

)

+∇bt

∫ t f

t0
�⊤t btdt (A.126)

= ∇bt Esde(t)+�t (A.127)

At this point one can derive the functional derivatives of the energyEsde, with respect to the

variational functionsAt andbt . First Equation (A.51) is differentiated w.r.t.bt :

∇bt Esde(t) = ∇bt

(
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

)

(A.128)

=
1
2

〈

∇bt

[

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

]〉

qt

(A.129)

=
1
2

〈

∇bt

[(

(f(xt)+Atxt)−bt

)⊤
Σ
−1
(

(f(xt)+Atxt)−bt

)]〉

qt

(A.130)

=−1
2

2Σ−1
(

⟨f(xt)−gL(xt)⟩qt

)

(A.131)

=−Σ−1
(

⟨f(xt)⟩qt
+At ⟨xt⟩qt

−bt

)

(A.132)
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Moreover, from Equations (A.127) and (A.132) we have:

∇bt Esde(t) =−�t (A.133)

∇bt Esde(t) =−Σ−1
(

⟨f(xt)⟩qt
+At ⟨xt⟩qt

−bt

)

, (A.134)

from the above equations it reads:

�t =Σ
−1

(

⟨f(xt)⟩qt
+At ⟨xt⟩qt

−bt

)

(A.135)

and by re-arranging the terms in the above equations we get:

bt = ⟨f(xt)⟩qt
+Atmt −Σ�t , (A.136)

which is the update variational function ofbt .

Following the same procedure, the differentiation of Eq. (A.51) w.r.t.At is:

∇At Esde(t) = ∇At

(
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

)

(A.137)

=
1
2

〈

∇At

[(

(f(xt)−bt)− (−Atxt)

)⊤
Σ
−1
(

(f(xt)−bt)− (−Atxt)

)]〉

qt

(A.138)

=
1
2

2Σ−1
〈

(f(xt)+Atxt −bt)x⊤t
〉

qt

(A.139)

=Σ
−1

〈

f(xt)x⊤t +Atxtx⊤t −btx⊤t
〉

qt

(A.140)

=Σ
−1

(〈

f(xt)x⊤t
〉

qt

+At

〈

xtx⊤t
〉

qt

−bt

〈

x⊤t
〉

qt

)

(A.141)

=Σ
−1

(〈

f(xt)x⊤t
〉

qt

+At(mtm⊤t +St)−btm⊤t

)

(A.142)

=Σ
−1

(〈

f(xt)x⊤t
〉

qt

+At(mtm⊤t +St)−btm⊤t +
〈

f(xt)m⊤t
〉

qt

−
〈

f(xt)m⊤t
〉

qt

)

(A.143)

=Σ
−1

(〈

f(xt)x⊤t
〉

qt

−
〈

f(xt)m⊤t
〉

qt

+AtSt

)

−Σ
−1

(

−⟨f(xt)⟩qt
−Atmt +bt

)

m⊤t

(A.144)

=Σ
−1

(〈

f(xt)(xt −mt)
⊤
〉

qt

+AtSt

)

−∇bt Esde(t)m⊤t (A.145)

=Σ
−1

(

⟨∇xt f(xt)⟩qt
St +AtSt

)

−∇bt Esde(t)m⊤t (A.146)

=Σ
−1

(

⟨∇xt f(xt)⟩qt
+At

)

St −∇bt Esde(t)m⊤t (A.147)

where we have made use of the Equation (A.136) and the following identity:

⟨∇xt f(xt)⟩qt
=
〈

f(xt)(xt−mt)
⊤
〉

qt

S−1
t (A.148)
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Proof of identity given by Eq.(A.148) :

⟨∇xt f(xt)⟩qt
=

∫ +∞

−∞
∇xt f(xt)q(xt)dxt (A.149)

=
∫ +∞

−∞

[

∇xt

(

f(xt)q(xt)

)

− f(xt)∇xt q(xt)

]

dxt (A.150)

=
∫ +∞

−∞
∇xt

[

f(xt)q(xt)

]

dxt

︸ ︷︷ ︸

= 0

+
∫ +∞

−∞
f(xt)q(xt)S−1

t (xt −mt)dxt (A.151)

=
∫ +∞

−∞
f(xt)(xt−mt)

⊤S−1
t q(xt)dxt (A.152)

=
〈

f(xt)(xt −mt)
⊤
〉

qt

S−1
t (A.153)

Note however, that in order for the first integral in Equation(A.151), to be zero is is assumed that

the unknown functionf(xt), “moves” slower then the Gaussian approximation processq(xt), as

xt → ∞.

The functional derivative of (A.119) w.r.t.mt is given by:

∇mt L = ∇mt

(

FΣ(q,�)−
∫ t f

t0
tr{Ψt(Ṡt +2AtSt −Σ)}dt

−
∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt

)

(A.154)

= ∇mt F (q,�,Σ)−∇mt

∫ t f

t0
tr{Ψt(Ṡt +2AtSt −Σ)}dt

−∇mt

∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt (A.155)

= ∇mt

(∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt+KL [q0∥p0]

)

−∇mt

∫ t f

t0
�⊤t ṁt +�

⊤
t Atmt −�⊤t btdt (A.156)

= ∇mt

∫ t f

t0
Esde(t)dt−∇mt

∫ t f

t0
�⊤t ṁtdt−∇mt

∫ t f

t0
�⊤t Atmtdt (A.157)

= ∇mt

∫ t f

t0
Esde(t)dt+∇mt

∫ t f

t0
�̇⊤t mtdt−∇mt

∫ t f

t0
�⊤t Atmtdt (A.158)

Setting this expression equal to zero (∇mt L = 0) and then rearranging:

∇mt

∫ t f

t0
Esde(t)dt+∇mt

∫ t f

t0
�̇⊤t mtdt−∇mt

∫ t f

t0
�⊤t Atmtdt = 0 (A.159)

∇mt Esde(t)+ �̇t−A⊤t �t = 0 , (A.160)

leads to an ODE that describes the time evolution of the Lagrange multiplier�t :

�̇t =−∇mt Esde(t)+A⊤t �t , (A.161)

where we have used the fact (from product rule for differentiation) that:

d
dt
(�⊤t mt) =

d�⊤t
dt

mt +�
⊤
t

dmt

dt
(A.162)

145



Appendix A DERIVATIONS OF THE VGPA FRAMEWORK

and also the assumption that at the final time,t f , there are no consistency constraints, that is:

�t f =Ψt f = 0.

Working the same way as above and taking the functional derivative of (A.119) w.r.t.St results:

∇St L = ∇St

(

F (q,�,Σ)−
∫ t f

t0
tr{Ψt(Ṡt +2AtSt −Σ)}dt

−
∫ t f

t0
�⊤t (ṁt +Atmt −bt)dt

)

(A.163)

= ∇St F (q,�,Σ)−∇St

∫ t f

t0
tr{Ψt(Ṡt +2AtSt −Σ)}dt (A.164)

= ∇St

(∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt+KL [q0∥p0]

)

−∇St

∫ t f

t0
tr{Ψt(Ṡt +2AtSt}dt (A.165)

= ∇St

∫ t f

t0
Esde(t)dt−∇St

∫ t f

t0
tr{ΨtṠt}dt−2∇St

∫ t f

t0
tr{ΨtAtSt}dt (A.166)

= ∇St

∫ t f

t0
Esde(t)dt+∇St

∫ t f

t0
tr{Ψ̇tSt}dt−2∇St

∫ t f

t0
tr{ΨtAtSt}dt (A.167)

Setting this expression equal to zero (∇St L = 0) and then rearranging:

0= ∇St

∫ t f

t0
Esde(t)dt+∇St

∫ t f

t0
tr{Ψ̇tSt}dt−2∇St

∫ t f

t0
tr{ΨtAtSt}dt (A.168)

0= ∇St Esde(t)+ Ψ̇t−2ΨtAt , (A.169)

leads to an ODE that describes the time evolution of the Lagrange multiplierΨt :

Ψ̇t =−∇St Esde(t)+2ΨtAt , (A.170)

where the fact has been used (from properties of trace differentiation) that:

d
dt

tr{ΨtSt}= tr{ d
dt
(ΨtSt)} (A.171)

= tr{dΨt

dt
St +Ψt

dSt

dt
} (A.172)

= tr{dΨt

dt
St}+ tr{Ψt

dSt

dt
} . (A.173)

Along with the set of ordinary differential equations (A.161) and (A.170), which describe

the time evolution of the Lagrange multipliers, whenever there is an observationthe following

jump-conditions apply.

First is considered the�t jump-condition, which is given by the following expression:

�(t+n ) = �(t−n )−∇mt Eobs(tn) , (A.174)

where the superscriptst−n andt+n indicate times just before and after the observation time. Then the
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functional derivative ofEobs(tn) w.r.t. mt is calculated, which plays the role of the jump amplitude:

∇mt Eobs(t) = ∇mt

(
1
2

〈

(yt −Hxt)
⊤R−1(yt −Hxt)

〉

qt

+
d
2

ln(2π)+
1
2

ln ∣R∣
)

(A.175)

=
1
2

∇mt

(〈

(yt −Hxt)
⊤R−1(yt −Hxt)

〉

qt

)

(A.176)

=
1
2

∇mt

(〈

y⊤t R−1yt −y⊤t R−1Hxt −x⊤t H⊤R−1yt +x⊤t H⊤R−1Hxt

〉

qt

)

(A.177)

=
1
2

∇mt

(

y⊤t R−1yt −y⊤t R−1Hmt −m⊤t H⊤R−1yt + tr
{

H⊤R−1HSt

}

+m⊤t H⊤R−1Hmt

)

(A.178)

=
1
2

∇mt

(

y⊤t R−1yt −2y⊤t R−1Hmt + tr
{

H⊤R−1HSt

}

+m⊤t H⊤R−1Hmt

)

(A.179)

=
1
2

(

−2y⊤t R−1H+2H⊤R−1Hmt

)

(A.180)

=−H⊤R−1(yt −Hmt) (A.181)

Finally we have:

�(t+n ) = �(t−n )+H⊤R−1(Ytn−Hmtn) (A.182)

Then we consider theΨt jump-condition which is given by the following expression:

Ψ(t+n ) =Ψ(t−n )−∇St Eobs(tn) , (A.183)

Again the functional derivative ofEobs(tn) w.r.t. St , plays the role of the jump-amplitude.

∇St Eobs(t) = ∇St

(
1
2

〈

(yt −Hxt)
⊤R−1(yt −Hxt)

〉

qt

+
d
2

ln(2π)+
1
2

ln ∣R∣
)

(A.184)

=
1
2

∇St

(〈

(yt −Hxt)
⊤R−1(yt −Hxt)

〉

qt

)

(A.185)

=
1
2

∇St

(〈

y⊤t R−1yt −y⊤t R−1Hxt −x⊤t H⊤R−1yt +x⊤t H⊤R−1Hxt

〉

qt

)

(A.186)

=
1
2

∇St

(

y⊤t R−1yt −y⊤t R−1Hmt −m⊤t H⊤R−1yt + tr
{

H⊤R−1HSt

}

+m⊤t H⊤R−1Hmt

)

(A.187)

=
1
2

∇St

(

y⊤t R−1yt −2y⊤t R−1Hmt + tr
{

H⊤R−1HSt

}

+m⊤t H⊤R−1Hmt

)

(A.188)

=
1
2

H⊤R−1H . (A.189)

The final expression becomes:

Ψ(t+n ) =Ψ(t−n )− 1
2

H⊤R−1H . (A.190)
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A.3 Parameter Estimation

Before computing the necessary gradients for estimating the parameters the Lagrangian equation

(A.119), needs to be integrated by parts in order to make the boundary conditions explicit. That

leads to the following expression:

L = F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

Ṡt +2AtSt −Σ

)}

dt−
∫ t f

t0
�⊤t

(

ṁt +Atmt −bt

)

dt (A.191)

= F (q,�,Σ)−
∫ t f

t0
tr

{

ΨtṠt

}

+ tr

{

2ΨtAtSt

}

− tr

{

ΨtΣ

}

dt

−
∫ t f

t0
�⊤t ṁt +�

⊤
t Atmt −�⊤t btdt (A.192)

= F (q,�,Σ)−
∫ t f

t0

d
dt

tr

{

ΨtSt

}

− tr

{

Ψ̇tSt

}

+ tr

{

2ΨtAtSt

}

− tr

{

ΨtΣ

}

dt

−
∫ t f

t0

d
dt
(�⊤t mt)− �̇⊤t mt +�

⊤
t Atmt −�⊤t btdt (A.193)

= F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt

−
∫ t f

t0

d
dt

tr

{

ΨtSt

}

+
d
dt
(�⊤t mt)dt (A.194)

= F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt

−
∫ t f

t0

d
dt

(

tr

{

ΨtSt

}

+(�⊤t mt)

)

dt (A.195)

= F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt

−�⊤t f
mt f

︸ ︷︷ ︸

= 0

+�⊤t0 mt0− tr

{

Ψt f St f

}

︸ ︷︷ ︸

= 0

+tr

{

Ψt0St0

}

(A.196)

this derives from the fact that at the final (algorithm) time, when the cost function has been min-

imised, the consistency constraints should be fulfilled. That means that both Lagrange multipliers

are equal to zero.

A.3.1 Initial State

The initial approximate posterior processq(x0) is equal toN (x0∣m0,S0), where the initial true

posterior processp(x0) is chosen to be an isotropic Gaussian (i.e.N (x0∣�0,τ0I)).
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Taking the derivative of (A.196) with respect tom0 leads to the following expression:

∇m0L = ∇m0

(

F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt

−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt+�⊤0 m0+ tr

{

Ψ0S0

})

(A.197)

= ∇m0F (q,�,Σ)+∇m0(�
⊤
0 m0) (A.198)

= ∇m0KL [q(X0)∣∣p(X0)]+�0 (A.199)

= �0+
1
2

∇m0

(

ln ∣τ0I ⋅S−1
0 ∣+ tr

{

(τ0I)−1
[

(m0−�0)(m0−�0)
⊤+S0− τ0I

]})

(A.200)

= �0+
1
2

∇m0

(

tr

{

(τ0I)−1
[

(m0−�0)(m0−�0)
⊤
]})

(A.201)

= �0+
1
2

tr

{

∇m0

(

(τ0I)−1
[

(m0−�0)(m0−�0)
⊤
])}

(A.202)

= �0+
1
2

tr

{

∇m0

(

τ−1
0 (m0−�0)(m0−�0)

⊤
)}

(A.203)

= �0+
1
2

tr

{

τ−1
0 2(m0−�0)

}

(A.204)

= �0+ τ−1
0 (m0−�0) (A.205)

Taking the derivative of (A.196) with respect toS0 leads to the following expression:

∇S0L = ∇S0

(

F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt

−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt+�⊤0 m0+ tr

{

Ψ0S0

})

(A.206)

= ∇S0F (q,�,Σ)+∇S0tr

{

Ψ0S0

}

(A.207)

= ∇S0KL [q(X0)∣∣p(X0)]+Ψ0 (A.208)

=Ψ0+
1
2

∇S0

(

ln ∣τ0I ⋅S−1
0 ∣+ tr

{

(τ0I)−1
[

(m0−�0)(m0−�0)
⊤+S0− τ0I

]})

(A.209)

=Ψ0+
1
2

∇S0 ln ∣τ0I ⋅S−1
0 ∣+

1
2

∇S0tr
{
(τ0I)−1S0

}
(A.210)

=Ψ0−
1
2

S−1
0 +

1
2
(τ0I)−1 (A.211)

=Ψ0+
1
2

(

τ−1
0 I −S−1

0

)

(A.212)
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A.3.2 Drift Parameter

The gradients that are associated with the drift parameters� depend only on the energy that comes

from the SDE term in the posterior process. Hence:

∇�L = ∇�

(

F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt

−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt+�⊤0 m0+ tr

{

Ψ0S0

})

(A.213)

= ∇�F (q,�,Σ) (A.214)

= ∇�

(∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt+KL [q(X0)∥p(X0)]

)

(A.215)

= ∇�

∫ t f

t0
Esde(t)dt (A.216)

=
∫ t f

t0
∇�Esde(t)dt . (A.217)

To compute the above integral (A.217) one must first compute the derivative of Esde(t) w.r.t. � as

follows:

∇�Esde(t) = ∇�

(
1
2

〈

(f�−g)⊤Σ−1(f�−g)
〉

qt

)

(A.218)

=
1
2

〈

∇�

[

(f�−g)⊤Σ−1(f�−g)
]〉

qt

(A.219)

=
1
2

〈

∇�

(

f⊤�Σ
−1f�− f⊤�Σ

−1g−g⊤Σ−1f�+g⊤Σ−1g
)〉

qt

(A.220)

=
1
2

〈

∇�(f⊤�Σ
−1f�)−∇�(f⊤�Σ

−1g)−∇�(g⊤Σ−1f�)
〉

qt

(A.221)

=
1
2

〈

(∇�f⊤� )Σ
−1f�+ f⊤�Σ

−1(∇�f�)−g⊤Σ−1(∇�f�)−g⊤Σ−1(∇�f�)
〉

qt

(A.222)

=
1
2

〈

2f⊤�Σ
−1(∇�f�)−2g⊤Σ−1(∇�f�)

〉

qt

(A.223)

=

〈(

f(xt)−gL(xt)

)⊤
Σ
−1
(

∇�f(xt)

)〉

qt

, (A.224)

where we have used the shorthand notationsf� for f(xt) andg instead ofgL(xt).

A.3.3 System Noise Covariance Parameter

The estimation of the system noise is of great importance because the system noise along with the

drift parameter determines the dynamics of the system. The gradient of (A.196) with respect to
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the system noise covarianceΣ is given by:

∇ΣL = ∇Σ

(

F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt

−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt+�⊤0 m0+ tr

{

Ψ0S0

})

(A.225)

= ∇ΣF (q,�,Σ)+∇Σ

∫ t f

t0
tr

{

ΨtΣ

}

dt (A.226)

=
∫ t f

t0
∇ΣEsde(t)dt+

∫ t f

t0
∇Σtr

{

ΨtΣ

}

dt (A.227)

=
∫ t f

t0
∇ΣEsde(t)dt+

∫ t f

t0
Ψtdt (A.228)

and the gradient ofEsdewith respect toΣ is given by:

∇ΣEsde(t) = ∇Σ

[
1
2

〈

(f�−g)⊤Σ−1(f�−g)
〉

qt

]

(A.229)

=
1
2

〈

∇Σ

[

(f�−g)⊤Σ−1(f�−g)
]〉

qt

(A.230)

=−1
2

〈

Σ
−⊤(f�−g)(f�−g)⊤Σ−⊤

〉

qt

(A.231)

=−1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

Σ
−1 , (A.232)

because matrixΣ is symmetric.

A.3.4 Observation Noise Covariance Parameter

Although estimation of the noise related to the observable values is not addressed in the thesis,

the estimation of the noise covariance parameters is a straightforward extension and in some sense

completes the variational framework. The gradient of (A.196) with respect to the observation

noise covarianceR is given by:

∇RL = ∇R

(

F (q,�,Σ)−
∫ t f

t0
tr

{

Ψt

(

2AtSt −Σ

)

− Ψ̇tSt

}

dt

−
∫ t f

t0

{

�⊤t

(

Atmt −bt

)

− �̇⊤t mt

}

dt+�⊤0 m0+ tr

{

Ψ0S0

})

(A.233)

= ∇RF (q,�,Σ) (A.234)

= ∇R

(∫ t f

t0
Esde(t)dt+

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt+KL [q(X0)∥p(X0)]

)

(A.235)

= ∇R

∫ t f

t0
Eobs(t)∑

n
δ(t− tn)dt . (A.236)
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Therefore to compute the above gradient, one has to compute first the gradient ofEobs w.r.t. R.

∇REobs(t) = ∇R

(
1
2

〈

(yt −h(xt))
⊤R−1(yt −h(xt))

〉

qt

+
d
2

ln(2π)+
1
2

ln ∣R∣
)

(A.237)

=
1
2

∇R

〈

(yt −h(xt))
⊤R−1(yt −h(xt))

〉

qt

+
1
2

∇R ln ∣R∣ (A.238)

=−1
2

〈

R−1(yt −h(xt))(yt−h(xt))
⊤R−1

〉

qt

+
1
2

R−1 (A.239)

=−1
2

R−1
〈

(yt −h(xt))(yt−h(xt))
⊤
〉

qt

R−1+
1
2

R−1 (A.240)

=
1
2

R−1
(

I −
〈

(yt −h(xt))(yt−h(xt))
⊤
〉

qt

R−1
)

. (A.241)

A.4 Summary

To sum up, Appendix A presents a complete derivation the original VGPA framework. The mathe-

matical expressions cover the full multivariate case, although for the univariate cases more simpli-

fications apply. The specific expressions of the aforementioned equations, for the systems tested

here, are presented in Appendix D. In deriving the above equations many useful matrix identities

were found inThe Matrix Cookbook(Petersen and Petersen, 2007).
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B Computing the new gradients

of the RBF extension

Chapter 5 introduced a new RBF re-parametrisation of the initial variational problem ending up

with two sets of weights, one for the linear variational parameter{Ai}LAb
i=0 and one for the off-

set parameter{bi}LAb
i=0, whose optimal values need to be inferred by means of a gradient based

optimisation algorithm (SCG).

As usual these algorithms need the gradients of the objective (cost) function, with respect to

the parameters that are optimised. In this case the necessary gradients thatneed to be computed

are those of the approximateLagrangian function (see Eq. (5.5)), with respect to these matri-

ces/vectors, as shown in Eq. (5.8). Following the derivations of the initial (VGPA) algorithm

(Appendix A), the desired expressions are derived in the following two sections.

Once all the necessary derivatives have been computed they are packed all together and a batch

optimisation of the cost function leads to the optimal approximate posterior process. One obvious

difference, comparing to the original VGPA framework, is that all the previous partial derivatives

have to be computed separately, for each basis function. In a serial implementation, as the one

presented in the current work, this has a negative effect on the total computational performance of

the new approach. However, there is no fundamental reason to prevent a parallel implementation

in computing these derivatives, to speed up the overall performance.
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B.1 Gradient of the approximate Lagrangian with respect to A weights.

To compute the required gradient∇AL̃ , with A ≡ {A i}LAb
0 , one must first compute the partial

derivatives ofL̃ with respect toA i ∀ i ∈ {0, 1, 2, . . . , LAb}. This is done as follows:

∂L̃

∂A i
=

∂
∂A i

(

F̃ (qt ,θ,Σ)

−
∫ t f

t0

{

�⊤t (ṁt + Ãtmt − b̃t)+ tr{Ψt(Ṡt + ÃtSt +StÃ⊤t −Σ)}
}

dt

)

(B.1)

=
∂

∂A i
F̃ (qt ,θ,Σ)

− ∂
∂A i

∫ t f

t0

{

�⊤t (ṁt + Ãtmt − b̃t)+ tr{Ψt(Ṡt + ÃtSt +StÃ⊤t −Σ)}
}

dt (B.2)

=
∂

∂A i
F̃ (qt ,θ,Σ)− ∂

∂A i

∫ t f

t0
�⊤t Ãtmt dt− ∂

∂A i

∫ t f

t0
tr{ΨtÃtSt}+ tr{ΨtStÃ⊤t } dt (B.3)

=
∂

∂A i
F̃ (qt ,θ,Σ)−

∫ t f

t0
�tm⊤t φi(t) dt−2

∫ t f

t0
ΨtStφi(t) dt , (B.4)

whereÃt has been substituted with∑LA
i=0Ai×φi(t), according to Equation (5.4).

B.2 Gradient of the approximate Lagrangian with respect to b weights.

In a similar manner, the required gradient∇bL̃ , with b ≡ {bi}LAb
0 , is computed after the partial

derivatives ofL̃ with respect tobi ∀ i ∈ {0, 1, 2, . . . , LAb}, have been calculated.

∂L̃

∂bi
=

∂
∂bi

(

F̃ (qt ,θ,Σ)

−
∫ t f

t0

{

�⊤t (ṁt + Ãtmt − b̃t)+ tr{Ψt(Ṡt + ÃtSt +StÃ⊤t −Σ)}
}

dt

)

(B.5)

=
∂

∂bi
F̃ (qt ,θ,Σ)+

∂
∂bi

∫ t f

t0
�⊤t b̃t dt (B.6)

=
∂

∂bi
F̃ (qt ,θ,Σ)+

∫ t f

t0
�⊤t φi(t) dt , (B.7)

whereb̃t = ∑Lb
i=0bi×φi(t). The partial derivatives of the approximate value of the free energy

F̃ (qt ,θ,Σ), with respect to the weightsA i andbi are computed in a similar way.
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C Computing the new gradients

of the LP extension

The new parametrisation of the initial variational problem in terms of local polynomials, as pre-

sented in Chapter 6, concluded with two sets of coefficients, one for the linear variational param-

eter{A j}Jj=0 and one for the offset parameter{b j}Jj=0, whose optimal values need to be inferred

by means of a gradient optimisation algorithm. In a similar fashion as Appendix B,the necessary

gradients that need to be estimated are those of the approximateLagrangian function (see Eq.

6.3), with respect to these matrices/vectors.

Note that the gradients have to be computed within each sub-interval separately. In the present

implementation this is coded serially for simplicity, which has an increased computational cost to

the total performance of the LP algorithm. However, a parallel implementation is encouraged to

improve the speed of computations.

C.1 Gradient of the approximate Lagrangian with respect to A coeffi-

cients.

To compute the required gradient∇AL̃ , with A ≡ {A j}Jj=0, one must first compute the partial

derivatives ofL̃ with respect toA j ∀ j ∈ {0, 1, 2, . . . , J}. This is done as follows:
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∂L̃ j

∂A j =
∂

∂A j

(

F̃ j(q(xt),�,Σ)

−
∫

t∈T j

{

�⊤t (ṁt + Ã j
t mt − b̃ j

t )+ tr{Ψt(Ṡt + Ã j
t St +StÃ

j⊤
t −Σ)}

}

dt

)

(C.1)

=
∂

∂A j F̃ j(q(xt),�,Σ)− ∂
∂A j

∫
t∈T j

�⊤t Ã j
t mt dt

− ∂
∂A j

∫
t∈T j

tr{ΨtÃ
j
t St}+ tr{ΨtStÃ

j⊤
t } dt (C.2)

=
∂

∂A j F̃ j(q(xt),�,Σ)−
∫

t∈T j
�tm⊤t p

j(t)dt−2
∫

t∈T j
ΨtStp

j(t)dt . (C.3)

whereÃ j
t has been replaced withA j ×p j(t), according to Equation (6.4).

C.2 Gradient of the approximate Lagrangian with respect to b coeffi-

cients.

To compute the required gradient∇bL̃ , with b ≡ {b j}Jj=0, one must first compute the partial

derivatives ofL̃ with respect tob j ∀ j ∈ {0, 1, 2, . . . , J}:

∂L̃ j

∂b j =
∂

∂b j

(

F̃ j(q(xt),�,Σ)

−
∫

t∈T j

{

�⊤t (ṁt + Ã j
t mt − b̃ j

t )+ tr{Ψt(Ṡt + Ã j
t St +StÃ

j⊤
t −Σ)}

}

dt

)

(C.4)

=
∂

∂b j F̃ j(q(xt),�,Σ)+
∂

∂b j

∫
t∈T j

�⊤t b̃ j
t dt (C.5)

=
∂

∂b j F̃ j(q(xt),�,Σ)+
∫

t∈T j
�⊤t p

j(t) dt ,whereb̃ j
t =B

j ×p j(t). (C.6)

The partial derivatives of the approximate value of the free energyF̃ j(q(xt),�,Σ), with respect

to the coefficientsA j andb j , are computed in a similar way.
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D Analytic expressions of the

systems studied

This Appendix provides detailed analytic derivations of the energy terms and related gradients for

the univariate systems (OU and DW), as well as the three dimensional Lorenz ’63 (L3D). Once

the complete analytic expression of the energy related to the SDE is derived (Esde), the gradients

of this quantity will be developed. The optimal initial values (for the gradient optimisation pro-

cedure) of the linear and offset parametersA(0) andb(0) will be given. In addition, when the

analytic expressions are not available an alternative method to obtain the necessary approximate

expressions is provided.

D.1 Ornstein - Uhlenbeck (OU) system equations

The first system derived analytically is the one dimensionalOrnstein-Uhlenbeck(OU) process.

The stochastic differential equation that describes the time evolution of this linear process, as

introduced in Chapter 3, is given by:

dxt =−θ(xt−µ)dt+σ2dwt (D.1)
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whereθ > 0, is the mean reversion rate andµ is the mean value, which is often set to zero. Hence

the drift function of this one dimensional SDE is:

f(xt) =−θ(xt−µ) (D.2)

Before proceeding with the expression of the energy term, two important averages are com-

puted in advance that will help the following derivations. The first is the averaged drift function

with respect to the approximate Gaussian distributionqt
1. This is given by:

⟨f(xt)⟩qt
= ⟨−θ(xt−µ)⟩qt

(D.3)

=−θ⟨xt⟩qt
+θµ (D.4)

= θ(µ−mt) (D.5)

The second expression is the averaged gradient of the drift function with respect toxt , which

is derived as follows:

⟨∇xt f(xt)⟩qt
= ⟨∇xt (−θ(xt−µ))⟩qt

(D.6)

= ⟨−θ∇xt xt⟩qt
(D.7)

= ⟨−θ⟩qt
(D.8)

=−θ (D.9)

Energy from the SDE

The first expression is the energy term associated with the stochastic differential equation (D.1).

In what follows the initial expression will correspond to the general multivariate case as shown

in Chapter 4 and derived in more detail in Appendix A. Later on the generalexpressions are

substituted by the model equations of the system studied.

1This is a shorthand notation forN (xt ∣mt ,st).
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Esde(t) =
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

(D.10)

=
1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

(D.11)

=
1
2

σ−2

〈(

−θ(xt −µ)− (−atxt +bt)

)2
〉

qt

(D.12)

=
1
2

σ−2

〈(

−θxt +θµ+atxt −bt)

)2
〉

qt

(D.13)

=
1
2

σ−2
〈

θ2x2
t −θ2µxt −θatx

2
t +θbtxt −θ2µxt +θ2µ2+θµatxt −θµbt

−θatx
2
t +θµatxt +a2

t x2
t −atbtxt +θbtxt −θµbt −atbtxt +b2

t

〉

qt

(D.14)

=
1
2

σ−2
(
〈
x2

t (θ
2−2θat +a2

t )
〉

qt
+2

〈
xt(θbt −θ2µ+θµat −atbt)

〉

qt

+θ2µ2−2θµbt +b2
t

)

(D.15)

=
1
2

σ−2
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt −θ2µ+θµat −atbt)

+θ2µ2−2θµbt +b2
t

)

(D.16)

Step (D.11) is possible because the system is univariate and the noise coefficient does not depend

on the state vectorxt . Finally, ⟨xt⟩qt
and

〈
x2

t

〉

qt
are Gaussian moments; their expressions can be

found in Appendix F.

Gradients with respect to the marginal means and variances

The next section involves the derivation of the gradients ofEsde with respect to the first two

marginal moments. First is shown the derivative with respect to the marginal mean mt and in

a similar way the derivative with respect to the marginal variancest follows.

Gradient of Esdew.r.t. mt :

∇mt Esde(t) = ∇mt

[
1
2

σ−2
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt −θ2µ+θµat −atbt)+θ2µ2

−2θµbt +b2
t

)]

(D.17)

=
1
2

σ−2
(

∇mt

〈
x2

t

〉

qt
(θ−at)

2+2∇mt ⟨xt⟩qt
(θbt−θ2µ+θµat −atbt)

)

(D.18)

=
1
2

σ−2
(

2mt(θ−at)
2+2(θbt−θ2µ+θµat −atbt)

)

(D.19)

= σ−2
(

mt(θ−at)
2+θ(bt−θµ+µat)−atbt

)

(D.20)
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Gradient of Esdew.r.t. st :

∇st Esde(t) = ∇st

[
1
2

σ−2
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt −θ2µ+θµat −atbt)+θ2µ2

−2θµbt +b2
t

)]

(D.21)

=
1
2

σ−2∇st

〈
x2

t

〉

qt
(θ−at)

2 (D.22)

=
1
2

σ−2(θ−at)
2 (D.23)

where the derivatives of the Gaussian moments with respect tomt andst (i.e. ∇mt ⟨xt⟩qt
, ∇mt

〈
x2

t

〉

qt

and∇st

〈
x2

t

〉

qt
), are provided in Appendix F.

Gradients with respect to the variational parameters

Appendix A, showed how the derivatives of the general expression of the Esde with respect the

variational parametersAt andbt can be derived. Following that example, here we compute the

same expressions for the OU system.

Gradient of Esdew.r.t. the offset parameterbt :

∇bt Esde(t) =−σ−2
(

⟨f(xt)⟩qt
+at ⟨xt⟩qt

−bt

)

(D.24)

=−σ−2
(

θ(µ−mt)+at ⟨xt⟩qt
−bt

)

(D.25)

using Equation (D.5).

Gradient of Esdew.r.t. the linear parameter at :

∇at Esde(t) = σ−2
(

⟨∇xt f(xt)⟩qt
+at

)

st −∇bt Esde(t)mt

= σ−2(−θ+at)st −∇bt Esde(t)mt (D.26)

using Equation (D.9).

Gradients with respect to the (hyper-) parameters

For the estimation of the (hyper-) parameters, in a gradient based optimisationroutine, as sug-

gested in Chapter 4, the gradients of the energy term have to be estimated. For the OU system are

given as follows:

Gradient of Esdew.r.t. the drift parameters �: The general expression of the OU drift function

includes two parameters� = [θ, µ]⊤. The gradient ofEsdewith respect to this vector is:

∇�Esde=

[
∂Esde

∂θ
,

∂Esde

∂µ

]⊤
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The partial derivatives are computed separately as follows:

∂Esde

∂θ
=

∂
∂θ

[
1
2

σ−2
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt −θ2µ+θµat −atbt)+θ2µ2

−2θµbt +b2
t

)]

(D.27)

=
1
2

σ−2
(
〈
x2

t

〉

qt

∂
∂θ

(θ−at)
2+2⟨xt⟩qt

∂
∂θ

(θbt −θ2µ+θµat −atbt)+
∂

∂θ
θ2µ2

−2
∂

∂θ
θµbt

)

(D.28)

=
1
2

σ−2
(

2
〈
x2

t

〉

qt
(θ−at)+2⟨xt⟩qt

(bt −2θµ+µat)+2θµ2−2µbt

)

(D.29)

= σ−2
(
〈
x2

t

〉

qt
(θ−at)+ ⟨xt⟩qt

(bt −2θµ+µat)+θµ2−µbt

)

(D.30)

∂Esde

∂µ
=

∂
∂µ

[
1
2

σ−2
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt −θ2µ+θµat −atbt)+θ2µ2

−2θµbt +b2
t

)]

(D.31)

=
1
2

σ−2
(

2⟨xt⟩qt

∂
∂µ

(θbt −θ2µ+θµat −atbt)+
∂
∂µ

θ2µ2−2
∂
∂µ

θµbt

)

(D.32)

=
1
2

σ−2
(

2⟨xt⟩qt
(θat −θ2)+2θ2µ−2θbt

)

(D.33)

= θσ−2
(

mt(at −θ)+θµ−bt

)

(D.34)

Gradient of Esde w.r.t. the noise parameterσ2: Following a similar derivation to above the

derivative of the energy with respect to the system noise coefficient is given by:

∂Esde

∂σ2 =
∂

∂σ2

[
1
2

σ−2
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt−θ2µ+θµat −atbt)+θ2µ2

−2θµbt +b2
t

)]

(D.35)

=−1
2

σ−4
(
〈
x2

t

〉

qt
(θ−at)

2+2⟨xt⟩qt
(θbt −θ2µ+θµat −atbt)+θ2µ2

−2θµbt +b2
t

)

(D.36)

Optimal initial values of the variational parameters

In order to initialize the optimisation routine (smoothing algorithm), as suggested in Chapter 4,an

initial guess has to be made for the all thediscretizedvariational parametersa(k) andb(k). As

shown in Archambeau et al. (2008), these can be expressed as functions of the Lagrange multipli-
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ers (k), �(k) as well as the meansm(k) as shown below:

a(k) =−⟨∇xt f(xt)⟩qt
+2σ2 (k) (D.37)

b(k) = ⟨f(xt)⟩qt
+a(k)∗m(k)−σ2�(k) (D.38)

wherea(k), b(k), m(k),  (k) and�(k) are now vectors containing all the discrete time variables

at , bt , mt , ψt and λt , k is the index of the optimisation loop (i.e.k indicates algorithmic time

rather than discretisation time) and the symbol ’∗’ indicates element-wise multiplication between

two vectors of the same size. Using Equations (D.5) and (D.9) these expressions can be further

expanded. The linear parameter becomes:

a(k) =−⟨∇xt f(xt)⟩qt
+2σ2 (k) (D.39)

= θ+2σ2 (k) (D.40)

and the bias parameter:

b(k) = ⟨f(xt)⟩qt
+a(k)∗m(k)−σ2�(k) (D.41)

= θ(µ−m(k))+(θ+2σ2 (k))∗m(k)−σ2�(k) (D.42)

= θµ−θm(k)+θm(k)+2σ2 (k)∗m(k)−σ2�(k) (D.43)

= θµ+σ2(2 (k)∗m(k)−�(k)) (D.44)

However fork = 0 (i.e. the beginning of the optimisation process), the Lagrange multipliers are

set to zero (i.e. (0) = 0 and�(0) = 0). Hence the above expressions for the initial iteration of

the algorithm are simplified to:

a(0) = θ and b(0) = θµ (D.45)

D.2 Double Well (DW) system equations

The second system for which the expressions of the variational framework are derived analytically,

is the univariatedouble well(DW). This non-linear stochastic process is governed by the following

SDE:

dxt = 4xt(θ−x2
t )dt+σ2 dwt (D.46)

with drift parameterθ > 0, indicating the system’s stable states.

The analytic derivations of this system is follows a similar approach to that presented for the

OU process. First the averaged drift function is computed with respect tothe Gaussian distribution
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qt , as shown in Equation (D.49), followed by the averaged gradient of the drift with respect toxt

(Eq. D.53).

⟨f(xt)⟩qt
=
〈
4xt(θ−x2

t )
〉

qt
(D.47)

=
〈
4θxt −4x3

t

〉

qt
(D.48)

= 4θ⟨xt⟩qt
−4

〈
x3

t

〉

qt
(D.49)

⟨∇xt f(xt)⟩qt
=
〈
∇xt (4xt(θ−x2

t ))
〉

qt
(D.50)

=
〈
∇xt (4θXt−4X3

t )
〉

qt
(D.51)

=
〈
4θ−12x2

t

〉

qt
(D.52)

= 4θ−12
〈
x2

t

〉

qt
(D.53)

Energy from the SDE

The energy term related to the stochastic differential equation (D.46), is:

Esde(t) =
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

(D.54)

=
1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

(D.55)

=
1
2

σ−2

〈(

4xt(θ−x2
t )− (−atxt +bt)

)2
〉

qt

(D.56)

=
1
2

σ−2

〈(

4θxt −4x3
t +atxt −bt

)2
〉

qt

(D.57)

=
1
2

σ−2

〈(

(4θ+at)xt −4x3
t −bt

)2
〉

qt

(D.58)

=
1
2

σ−2
〈(

ctxt −4x3
t −bt

)2
〉

qt

(D.59)

=
1
2

σ−2〈c2
t x2

t −4ctx
4
t −btctxt −4ctx

4
t +16x6

t +4btx
3
t −btctxt +4btx

3
t +b2

t

〉

qt
(D.60)

=
1
2

σ−2〈c2
t x2

t −8ctx
4
t −2btctxt +16x6

t +8btx
3
t +b2

t

〉

qt
(D.61)

=
1
2

σ−2
(

c2
t

〈
x2

t

〉

qt
−8ct

〈
x4

t

〉

qt
−2btct ⟨xt⟩qt

+16
〈
x6

t

〉

qt
+8bt

〈
x3

t

〉

qt
+b2

t

)

(D.62)

where in step (D.59) is introduced, for simplicity of the presentation, the variable ct = (4θ+at)

and all the higher order Gaussian moments⟨xt⟩qt
,
〈
x2

t

〉

qt
,
〈
x3

t

〉

qt
,
〈
x4

t

〉

qt
and

〈
x6

t

〉

qt
, are given in

Appendix F.

Gradients with respect to the marginal means and variances

This section presents the derivations of the gradients ofEsde with respect to the marginal means

and variances. The derivative with respect to the marginal meanmt is computed first, followed by
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the derivative with respect to the marginal variancest .

Gradient of Esdew.r.t. mt :

∇mt Esde(t) = ∇mt

[
1
2

σ−2
(

c2
t

〈
x2

t

〉

qt
−8ct

〈
x4

t

〉

qt
−2btct ⟨xt⟩qt

+16
〈
x6

t

〉

qt
+8bt

〈
x3

t

〉

qt
+b2

t

)]

(D.63)

=
1
2

σ−2
(

c2
t ∇mt

〈
x2

t

〉

qt
−8ct∇mt

〈
x4

t

〉

qt
−2btct +16∇mt

〈
x6

t

〉

qt
+8bt∇mt

〈
x3

t

〉

qt

)

(D.64)

Gradient of Esdew.r.t. st :

∇st Esde(t) = ∇st

[
1
2

σ−2
(

c2
t

〈
x2

t

〉

qt
−8ct

〈
x4

t

〉

qt
−2btct ⟨xt⟩qt

+16
〈
x6

t

〉

qt
+8bt

〈
x3

t

〉

qt
+b2

t

)]

(D.65)

=
1
2

σ−2
(

c2
t ∇st

〈
x2

t

〉

qt
−8ct∇st

〈
x4

t

〉

qt
+16∇st

〈
x6

t

〉

qt
+8bt∇st

〈
x3

t

〉

qt

)

(D.66)

with all the derivatives of the higher order Gaussian moments with respect tomt andst , such as

∇mt

〈
x2

t

〉

qt
, ∇mt

〈
x3

t

〉

qt
, ∇mt

〈
x4

t

〉

qt
, ∇mt

〈
x6

t

〉

qt
, ∇st

〈
x2

t

〉

qt
, ∇st

〈
x3

t

〉

qt
, ∇st

〈
x4

t

〉

qt
and∇st

〈
x6

t

〉

qt
, again

provided in Appendix F.

Gradients with respect to the variational parameters

Following a similar methodology, as shown for the OU system, the gradients ofEsde w.r.t. the

variational parametersat andbt for the DW system, are derived using Equations (D.49) and (D.53).

Gradient of Esdew.r.t. the offset parameterbt :

∇bt Esde(t) =−σ−2
(

⟨f(xt)⟩qt
+at ⟨xt⟩qt

−bt

)

(D.67)

=−σ−2
(

4θ⟨xt⟩qt
−4

〈
x3

t

〉

qt
+at ⟨xt⟩qt

−bt

)

(D.68)

=−σ−2
(

(4θ+at)⟨xt⟩qt
−4

〈
x3

t

〉

qt
−bt

)

(D.69)

Gradient of Esdew.r.t. the linear coefficient at :

∇at Esde(t) = σ−2
(

⟨∇xt f(xt)⟩qt
+at

)

st −∇bt Esde(t)mt (D.70)

= σ−2
(

4θ−12
〈
x2

t

〉

qt
+at

)

st −∇bt Esde(t)mt (D.71)

Gradients with respect to the (hyper-) parameters

The estimation of the (hyper-) parameters, for the DW system, includes the partial derivatives of

Esdewith respect toθ andσ2. These are given by:
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Gradient of Esdew.r.t. drift parameter θ: As shown earlier the drift function of the DW process

(see Eq. D.46), has only one parameter. The classical approach to derive the necessary partial

derivative ofEsde is simply to differentiate Equation (D.62) w.r.t.θ parameter. However a simpler

approach is to use the general expression of this gradient as shown in Appendix A and then make

the appropriate substitution for the model that is studied. That leads to the following expression:

∇�Esde(t) =
〈

(f(xt)−gL(xt))
⊤
Σ
−1(∇�f(xt))

〉

qt

(D.72)

=Σ
−1

〈

∇�f(xt)(f(xt)−gL(xt))
⊤
〉

qt

(D.73)

= σ−2〈4xt(4θxt −4x3
t +atxt −bt)

〉

qt
(D.74)

= σ−2〈16θx2
t −16x4

t +4atx
2
t −4btxt

〉

qt
(D.75)

= 4σ−2〈(4θ+at)x
2
t −4x4

t −btxt
〉

qt
(D.76)

= 4σ−2
(

(4θ+at)
〈
x2

t

〉

qt
−4

〈
x4

t

〉

qt
−bt ⟨xt⟩qt

)

(D.77)

where we have make use of the fact that the derivative of the DW drift function with respect to the

drift parameter is given by:

∇θf(xt) = ∇θ
(
4xt(θ−x2

t )
)

(D.78)

= ∇θ
(
4θxt −4x3

t

)
(D.79)

= 4xt (D.80)

Gradient of Esdew.r.t. the system noise parameterσ2: Although the computation of the partial

derivative ofEsdew.r.t. σ2 is straightforward, here is followed a similar approach as above (using

the general expressions of the gradient) to demonstrate the ease of computing system specific

expressions from the general multivariate variational framework.

∇ΣEsde(t) =−
1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

Σ
−1 (D.81)

=−1
2

σ−2
〈(

(4θ+at)xt −4x3
t −bt

)2
〉

qt

σ−2 (D.82)

=−1
2

σ−4〈c2
t x2

t −4ctx
4
t −btctxt −4ctx

4
t +16x6

t +4btx
3
t −btctxt +4btx

3
t +b2

t

〉

qt

(D.83)

=−1
2

σ−4〈c2
t x2

t −8ctx
4
t −2btctxt +16x6

t +8btx
3
t +b2

t

〉

qt
(D.84)

=−1
2

σ−4
(

c2
t

〈
x2

t

〉

qt
−8ct

〈
x4

t

〉

qt
−2btct ⟨xt⟩qt

+16
〈
x6

t

〉

qt
+8bt

〈
x3

t

〉

qt
+b2

t

)

(D.85)

where the variablect = 4θ+at , is used to simplify the expressions.
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Optimal initial values of the variational parameters

In a similar fashion to the OU system, the initial “guesses” for the all thediscretizedvariational

parametersa(k) and b(k) are given by Equations D.38, after having substituted the Equations

(D.49) and (D.53) for the DW system.

Initial linear parameter:

a(k) =−⟨∇xt f(xt)⟩qt
+2σ2 (k) (D.86)

=−4θ+12
〈
x2

t

〉

qt
+2σ2 (k) (D.87)

=−4θ+12
(
m(k)2+s(k)

)
+2σ2 (k) (D.88)

and since fork= 0 the Lagrange multiplier (0) = 0, the expression becomes:

a(0) =−4θ+12
(
m(0)2+s(0)

)
(D.89)

Initial bias parameter:

b(k) = ⟨f(xt)⟩qt
+a(k)∗m(k)−σ2�(k) (D.90)

= 4θ⟨xt⟩qt
−4

〈
x3

t

〉

qt
+
(
−4θ+12

(
m(k)2+s(k)

)
+2σ2 (k)

)
∗m(k)−σ2�(k) (D.91)

= 4θm(k)−4
(
m(k)3+3m(k)∗s(k)

)
−4θm(k)+12m(k)3+12m(k)∗s(k)

+2σ2 (k)∗m(k)−σ2�(k) (D.92)

= 4θm(k)−4m(k)3−12m(k)∗s(k)−4θm(k)+12m(k)3+12m(k)∗s(k)

+2σ2 (k)∗m(k)−σ2�(k) (D.93)

= 8m(k)3+2σ2 (k)∗m(k)−σ2�(k) (D.94)

(D.95)

where the higher order expectations
〈
x2

t

〉

qt
and

〈
x3

t

〉

qt
, have been expanded to make the derivations

more complete. Also the symbol “*” operates element-wise multiplication, between two vectors

of the same size. Since fork = 0 the Lagrange multipliers (0) = 0 and�(0), the expression

becomes:

b(0) = 8m(0)3 (D.96)

Here an obvious obstacle arises since to initialize all the discrete parametersa(0) andb(0), one

needs an initial guess for all the marginal means and variances (i.e.m(0) ands(0)). To overcome

this problem a simple solution is to use a Gaussian process regression “smoother” (Rasmussen

and Williams, 2006), on the observations, to get an initial estimate of the marginalmeans and

variances and then use these values to initialize the variational parameters.
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D.3 Lorenz ’63 (L3D) system equations

The final system for which the required equations were computed analytically is the stochastic

version of the three dimensional chaotic Lorenz ’63 (L3D). Because these derivations demand

many computations an effort is made to emphasize more the way the equations arederived, rather

than the detailed individual steps. Initially, the systems’ equations will be provided in detail and

subsequently they will be decomposed to several parts that will help the readability of the presen-

tation.

The time evolution of the L3D system is described by the following stochastic differential

equation:

dxt =

⎡

⎢
⎢
⎢
⎣

σ(yt −xt)

ρxt −yt −xtzt

xtyt −βzt

⎤

⎥
⎥
⎥
⎦

dt+Σ
1/2 dwt , (D.97)

wherext = [xt yt zt ]
⊤ ∈ℜ3 in the state vector representing all three dimensions,�= [σ ρ β]⊤ ∈ℜ3,

is the drift parameter vector,Σ ∈ℜ3×3 is a diagonal covariance matrix andwt ∈ℜ3.

Energy from the SDE

Initially we recall the expression that gives the energy term related to the SDE (see Appendix A),

that is:

Esde(t) =
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

(D.98)

The drift functionf(xt) of this system is given by:

f(xt) =

⎡

⎢
⎢
⎢
⎣

σ(yt −xt)

ρxt −yt −xtzt

xtyt −βzt

⎤

⎥
⎥
⎥
⎦

, (D.99)

while the linear approximationgL(xt) is given by:

gL(xt) =−Atxt +bt (D.100)

=−

⎡

⎢
⎢
⎢
⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎥
⎥
⎥
⎦

t

×

⎡

⎢
⎢
⎢
⎣

x

y

z

⎤

⎥
⎥
⎥
⎦

t

+

⎡

⎢
⎢
⎢
⎣

b1

b2

b3

⎤

⎥
⎥
⎥
⎦

t

(D.101)

=−

⎡

⎢
⎢
⎢
⎣

A11x+A12y+A13z−b1

A21x+A22y+A23z−b2

A31x+A32y+A33z−b3

⎤

⎥
⎥
⎥
⎦

t

, (D.102)
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where the (continuous) dependency on time ’t’ is denoted by the subscripton the matrix and

vectors. Combining Equations (D.99) and (D.102) we get the necessary vector vt = (f(xt)−
gL(xt)), as shown in Eq.(D.104).

vt =

⎡

⎢
⎢
⎢
⎣

σ(y−x)

ρx−y−xz

xy−βz

⎤

⎥
⎥
⎥
⎦

t

+

⎡

⎢
⎢
⎢
⎣

A11x+A12y+A13z−b1

A21x+A22y+A23z−b2

A31x+A32y+A33z−b3

⎤

⎥
⎥
⎥
⎦

t

(D.103)

=

⎡

⎢
⎢
⎢
⎣

σy−σx+A11x+A12y+A13z−b1

ρx−y−xz+A21x+A22y+A23z−b2

xy−βz+A31x+A32y+A33z−b3

⎤

⎥
⎥
⎥
⎦

t

(D.104)

At this point the initial energy expression Eq.(D.98) becomes:

Esde(t) =
1
2

〈

v⊤t Σ
−1vt

〉

qt

(D.105)

=
1
2

〈

v⊤t

⎡

⎢
⎢
⎢
⎣

Σx 0 0

0 Σy 0

0 0 Σz

⎤

⎥
⎥
⎥
⎦

−1

vt

〉

qt

(D.106)

=
1
2

[
Σ−1

x Σ−1
y Σ−1

z

]〈
v2

t

〉

qt
(D.107)

=
1
2

[
Σ−1

x Σ−1
y Σ−1

z

]
×
〈

⎡

⎢
⎢
⎢
⎣

(σy−σx+A11x+A12y+A13z−b1)
2

(ρx−y−xz+A21x+A22y+A23z−b2)
2

(xy−βz+A31x+A32y+A33z−b3)
2

⎤

⎥
⎥
⎥
⎦

t

〉

qt

(D.108)

=
1
2

[
Σ−1

x Σ−1
y Σ−1

z

]
×

⎡

⎢
⎢
⎢
⎣

〈
(σy−σx+A11x+A12y+A13z−b1)

2
〉

qt
〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2
〉

qt
〈
(xy−βz+A31x+A32y+A33z−b3)

2
〉

qt

⎤

⎥
⎥
⎥
⎦

t

, (D.109)

whereΣx, Σy andΣz represent the noise on each separate dimension of the system and the square

of the vectorvt , as appears in step (D.107), operates element-wise square, as shown later in step

(D.108).

The next step is to expand the squares in the above expression and compute the required expec-

tations. This requires some straightforward but tedious calculations, whichresult in some rather

long mathematical expressions. Here such presentation is avoided and the resulting expression of

theEsde is given more compactly by:

Esde(t) =
1
2

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

, (D.110)

where the dependency on time ’t’ has been omitted of notational convenience.
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Gradients with respect to the marginal means and variances

Once the complete expression ofEsdehas been expanded then the gradients with respect tomt and

St can be computed.

Gradient of Esde w.r.t. the marginal mean vector mt : Since the marginal mean vectormt

consists of three variables (i.e.mt = [mx my mz]
⊤
t ), in order to compute∇mt Esde(t), one has to

compute the partial derivatives ofEsde(t) with respect tomxt , myt andmzt as shown below.

∇mt Esde(t) =

⎡

⎢
⎢
⎢
⎣

∂Esde
∂mx

∂Esde
∂my

∂Esde
∂mz

⎤

⎥
⎥
⎥
⎦

t

, (D.111)

where the sub-script ’t’ indicates time. The partial derivatives are computed as follows:

∙ Partial derivative ofEsde(t) with respect tomxt :

∂Esde(t)
∂mxt

=
1
2

∂
∂mxt

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.112)

=
1
2

(

Σ−1
x

∂
∂mxt

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂mxt

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂mxt

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.113)

∙ Partial derivative ofEsde(t) with respect tomyt :

∂Esde(t)
∂myt

=
1
2

∂
∂myt

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.114)

=
1
2

(

Σ−1
x

∂
∂myt

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂myt

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂myt

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.115)
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∙ Partial derivative ofEsde(t) with respect tomzt :

∂Esde(t)
∂mzt

=
1
2

∂
∂mzt

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.116)

=
1
2

(

Σ−1
x

∂
∂mzt

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂mzt

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂mzt

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.117)

Gradient of Esde w.r.t. the covariance matrix St : In a similar manner the computation of

∇St Esde(t), requires the partial derivatives ofEsde(t) with respect toSxx, Sxy, Sxz, Syy, Syz andSzz.

The marginal covariance matrixSt , can be schematically represented as:

St =

⎡

⎢
⎢
⎢
⎣

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎤

⎥
⎥
⎥
⎦

t

, (D.118)

whereSxx∈ℜ represents the variance on thex dimension,Sxy∈ℜ is the co-variance between the

x andy and sub-script ’t’ indicates time. Here the fact that matrixSt is symmetric reduces the

number of partial derivatives from nine to six (i.e.∂Esde(t)
∂Sxy

= ∂Esde(t)
∂Syx

). The gradient is given by:

∇St Esde(t) =

⎡

⎢
⎢
⎢
⎣

∂Esde
∂Sxx

∂Esde
∂Sxy

∂Esde
∂Sxz

∂Esde
∂Syx

∂Esde
∂Syy

∂Esde
∂Syz

∂Esde
∂Szx

∂Esde
∂Szy

∂Esde
∂Szz

⎤

⎥
⎥
⎥
⎦

t

(D.119)

∙ Partial derivative ofEsde(t) with respect toSxx:

∂Esde(t)
∂Sxx

=
1
2

∂
∂Sxx

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.120)

=
1
2

(

Σ−1
x

∂
∂Sxx

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂Sxx

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂Sxx

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.121)
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∙ Partial derivative ofEsde(t) with respect toSxy:

∂Esde(t)
∂Sxy

=
1
2

∂
∂Sxy

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.122)

=
1
2

(

Σ−1
x

∂
∂Sxy

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂Sxy

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂Sxy

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.123)

∙ Partial derivative ofEsde(t) with respect toSxz:

∂Esde(t)
∂Sxz

=
1
2

∂
∂Sxz

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.124)

=
1
2

(

Σ−1
x

∂
∂Sxz

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂Sxz

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂Sxz

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.125)

∙ Partial derivative ofEsde(t) with respect toSyy:

∂Esde(t)
∂Syy

=
1
2

∂
∂Syy

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.126)

=
1
2

(

Σ−1
x

∂
∂Syy

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂Syy

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂Syy

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.127)
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∙ Partial derivative ofEsde(t) with respect toSyz:

∂Esde(t)
∂Syz

=
1
2

∂
∂Syz

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.128)

=
1
2

(

Σ−1
x

∂
∂Syz

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂Syz

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂Syz

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.129)

∙ Partial derivative ofEsde(t) with respect toSzz:

∂Esde(t)
∂Szz

=
1
2

∂
∂Szz

(

Σ−1
x

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.130)

=
1
2

(

Σ−1
x

∂
∂Szz

〈
(σy−σx+A11x+A12y+A13z−b1)

2〉

qt

+Σ−1
y

∂
∂Szz

〈
(ρx−y−xz+A21x+A22y+A23z−b2)

2〉

qt

+Σ−1
z

∂
∂Szz

〈
(xy−βz+A31x+A32y+A33z−b3)

2〉

qt

)

(D.131)

Gradients with respect to the variational parameters

The general expressions of the gradients ofEsdewith respect toAt andbt , are given in Appendix

A as follows:

∇bt Esde(t) =−Σ−1
(

⟨f(xt)⟩qt
+At ⟨xt⟩qt

−bt

)

(D.132)

∇At Esde(t) =Σ
−1

(

⟨∇xt f(xt)⟩qt
+At

)

St −∇bt Esde(t)m⊤t (D.133)
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Equation D.132, requires the expectation of the drift function. This is given as follows:

⟨f(xt)⟩qt
=

〈

⎡

⎢
⎢
⎢
⎣

σ(yt −xt)

ρxt −yt −xtzt

xtyt −βzt

⎤

⎥
⎥
⎥
⎦

〉

qt

(D.134)

=

⎡

⎢
⎢
⎢
⎣

⟨σ(yt −xt)⟩qt

⟨ρxt −yt −xtzt⟩qt

⟨xtyt −βzt⟩qt

⎤

⎥
⎥
⎥
⎦

(D.135)

=

⎡

⎢
⎢
⎢
⎣

σ(⟨yt⟩qt
−⟨xt⟩qt

)

ρ⟨xt⟩qt
−⟨yt⟩qt

−⟨xtzt⟩qt

⟨xtyt⟩qt
−β⟨zt⟩qt

⎤

⎥
⎥
⎥
⎦

(D.136)

=

⎡

⎢
⎢
⎢
⎣

σ(my−mx)

ρmx−my−Sxz−mxmz

Sxy+mxmy−βmz

⎤

⎥
⎥
⎥
⎦

t

, (D.137)

wheremx, my andmz are the marginal means on each dimension (i.e.mt = [mx my mz]
⊤
t ) and also

we have used the identity⟨xtzt⟩qt
= Sxz+mxmz, whereSxz is the covariance betweenx andz.

Furthermore Eq.(D.133) requires the expectation of the Jacobian matrix∇xt f(xt), with respect

to the Gaussian approximationqt . This is computed as:

⟨∇xt f(xt)⟩qt
=

〈

⎡

⎢
⎢
⎢
⎣

−σ σ 0

ρ−zt −1 −xt

yt xt −β

⎤

⎥
⎥
⎥
⎦

〉

qt

(D.138)

=

⎡

⎢
⎢
⎢
⎣

−σ σ 0

ρ−⟨zt⟩qt
−1 −⟨xt⟩qt

⟨yt⟩qt
⟨xt⟩qt

−β

⎤

⎥
⎥
⎥
⎦

(D.139)

=

⎡

⎢
⎢
⎢
⎣

−σ σ 0

ρ−mz −1 −mx

my mx −β

⎤

⎥
⎥
⎥
⎦

t

, (D.140)

with ’t’ denoting dependency on time.

Gradients with respect to the (hyper-) parameters

The (hyper-) parameters that need to be estimated in the three dimensional stochastic Lorenz

system is a set of six parameters, three in the drift vector� = [σ ρ β]⊤ and the diagonal three

elements of the system noise covariance matrixΣ, (i.e. Σx, Σy andΣz). Below it is shown how the

gradients ofEsdewith respect to these parameters can be computed without approximation errors.

173



Appendix D ANALYTIC EXPRESSIONS OF THE SYSTEMS STUDIED

Gradient of Esdew.r.t. drift parameter �: Starting with the drift vector parameters, we recall

that the general expression given in Appendix (A), is:

∇�Esde(t) =
〈

(f(xt)−gL(xt))
⊤
Σ
−1(∇�f(xt))

〉

qt

(D.141)

In order to proceed the gradient of the drift function with respect to the parameter vector

(∇�f(xt)) has to computed. As shown below this is given by:

∇�f(xt) =

⎡

⎢
⎢
⎢
⎣

∂(σ(y−x))
∂σ

∂(σ(y−x))
∂ρ

∂(σ(y−x))
∂β

∂(ρx−y−xz)
∂σ

∂(ρx−y−xz)
∂ρ

∂(ρx−y−xz)
∂β

∂(xy−βz)
∂σ

∂(xy−βz)
∂ρ

∂(xy−βz)
∂β

⎤

⎥
⎥
⎥
⎦

t

(D.142)

=

⎡

⎢
⎢
⎢
⎣

(y−x) 0 0

0 x 0

0 0 −z

⎤

⎥
⎥
⎥
⎦

t

, (D.143)

where the sub-script ’t’ denotes time dependency. Using the result fromEquation D.143, the

derivation of the necessary gradient yields:

∇�Esde(t) =
〈

(f(xt)−gL(xt))
⊤
Σ
−1(∇�f(xt))

〉

qt

(D.144)

=

〈

v⊤t ×

⎡

⎢
⎢
⎢
⎣

Σx 0 0

0 Σy 0

0 0 Σz

⎤

⎥
⎥
⎥
⎦

−1

×

⎡

⎢
⎢
⎢
⎣

(yt −xt) 0 0

0 xt 0

0 0 −zt

⎤

⎥
⎥
⎥
⎦

〉

qt

(D.145)

=

〈

v⊤t ×

⎡

⎢
⎢
⎢
⎣

Σ−1
x (yt −xt) 0 0

0 Σ−1
y xt 0

0 0 −Σ−1
z zt

⎤

⎥
⎥
⎥
⎦

〉

qt

(D.146)

=

〈

⎡

⎢
⎢
⎢
⎣

v1Σ−1
x (y−x)

v2Σ−1
y x

−v3Σ−1
z z

⎤

⎥
⎥
⎥
⎦

t

〉

qt

(D.147)

=

⎡

⎢
⎢
⎢
⎣

Σ−1
x ⟨v1∗ (y−x)⟩qt

Σ−1
y ⟨v2∗x⟩qt

−Σ−1
z ⟨v3∗z⟩qt

⎤

⎥
⎥
⎥
⎦

t

, (D.148)

where the vectorvt = [v1 v2 v3]
⊤ as defined in Equation (D.104).

Gradient of Esdew.r.t. noise covariance matrixΣ: Similarly, the gradient ofEsdewith respect

to the system noise covariance can be computed by using the general multivariate expression.

However, things here are more simple because as one can see from Equation (D.150), all the
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necessary expectations have already been precomputed in previous steps, hence there is no need

for additional computational burden.

∇ΣEsde(t) =−
1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

Σ
−1 (D.149)

=−1
2
Σ
−1

〈

vtv⊤t
〉

qt

Σ
−1 (D.150)

Optimal initial values of the variational parameters

Unlike the univariate systems where the initial values for the all thediscretizedvariational param-

eters could be represented in compact notation asa(k) andb(k), here for the multivariate Lorenz

system the notation is slightly altered toAt(k) andbt(k), with subscript ’t ’ denoting discrete time

instant, whereas the index ’k’ represents algorithmic time in the optimisation procedure (i.e. num-

ber of iterations).

Initial linear parameter: The general expression for the linear parameter at time ’t’ is given by:

At(k) =−⟨∇xt f(xt)⟩qt
+2ΣΨt(k) (D.151)

and using Equation (D.140), the initial iterationk= 0 becomes:

At(0) =−⟨∇xt f(xt)⟩qt
(D.152)

=−

⎡

⎢
⎢
⎢
⎣

−σ σ 0

ρ−mz −1 −mx

my mx −β

⎤

⎥
⎥
⎥
⎦

t, k=0

(D.153)

=

⎡

⎢
⎢
⎢
⎣

σ −σ 0

mz−ρ 1 mx

−my −mx β

⎤

⎥
⎥
⎥
⎦

t, k=0

(D.154)

whereAt(0) ∈ℜ3×3. In order to initialize the variational linear parameter one must have an initial

set of values for the marginal means (mxt(k = 0), mzt(k = 0) andmzt(k = 0)). This problem can

be solved by interpolating the observations with cubic splines (on each dimension separately), or

using any other method that will produce a smooth approximation of the mean path.

Initial bias parameter: Similarly the general expression for the offset parameter at time ’t’ is

given by:

bt(k) = ⟨f(xt)⟩qt
+At(k)∗mt(k)−Σ�t(k) (D.155)
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The expectation of the drift function for the L3D is given by Equation (D.137). Hence the

initial iteration,k= 0 is:

bt(0) = ⟨f(xt)⟩qt
+At(0)∗mt(0) (D.156)

=

⎡

⎢
⎢
⎢
⎣

σ(my−mx)

ρmx−my−Sxz−mxmz

Sxy+mxmy−βmz

⎤

⎥
⎥
⎥
⎦

t, k=0

+

⎡

⎢
⎢
⎢
⎣

σ −σ 0

mz−ρ 1 mx

−my −mx β

⎤

⎥
⎥
⎥
⎦

t, k=0

×

⎡

⎢
⎢
⎢
⎣

mx

my

mz

⎤

⎥
⎥
⎥
⎦

t, k=0

(D.157)

=

⎡

⎢
⎢
⎢
⎣

σ(my−mx)

ρmx−my−Sxz−mxmz

Sxy+mxmy−βmz

⎤

⎥
⎥
⎥
⎦

t, k=0

+

⎡

⎢
⎢
⎢
⎣

σ(mx−my)

mx(mz−ρ)+my+mxmz

−mxmy−mxmy+βmz

⎤

⎥
⎥
⎥
⎦

t, k=0

(D.158)

=

⎡

⎢
⎢
⎢
⎣

0

mxmz−Sxz

Sxy−mxmy

⎤

⎥
⎥
⎥
⎦

t, k=0

(D.159)

wherebt(0) ∈ℜ3 andmxt(k = 0), mzt(k = 0), mzt(k = 0) are given as above for the initial linear

parameterAt(0), while Sxz(k = 0) andSxy(k = 0) represent covariances. To obtain these covari-

ances is not as trivial as for the approximations of the marginal means. Here it is assumed that

these values are zero at the beginning of the optimisation process. In practise, that assumption has

minor effect in the performance of the algorithm at convergence.

D.4 Approximations using the unscented transformation

An alternative method for obtaining the necessary expectations, for the variational approximation

framework, is presented based on theunscented transformation(UT) (Uhlmann, 1995). As the

previous section for the L3D revealed, the analytic expressions for a multivariate system requires

many computations which even when available there are prone to numerical errors (computational

and derivations). The approach presented here makes the variationalalgorithm more generic,

although that comes with the cost of introducing additional approximation errors.

The presentation of the equations follows a similar approach as seen in the previous sections,

however all the mathematical expressions will remain at a higher-level without going into detail

about system specific drift functions and parameter vectors. In this waya general approach will

be given that can be applied to any system as long as the drift function is defined specifically. This

method was applied successfully to the three and forty dimensional stochasticLorenz systems

(L3D and L40D). For the L3D, where the analytic expressions were alsoavailable the compari-

son between the two versions showed good match, although the unscented transformation needed
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careful tuning.

Energy from the SDE: Initially, the energy related to the stochastic differential equation that

describes the stochastic process is given by:

Esde(t) =
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

(D.160)

Settingzt = (f(xt)−gL(xt)) and using the fact the the system noise coefficient matrixΣ is diago-

nal, the above expression can be rewritten as:

Esde(t) =
1
2

〈

z⊤t Σ
−1zt

〉

qt

(D.161)

=
1
2

[
Σ−1

x Σ−1
y Σ−1

z

]〈
z2

t

〉

qt
, (D.162)

whereΣx, Σy andΣz represent the noise variance on each separate dimension of the system and the

square of the vectorzt , as appears in step (D.162), operates element-wise square. Once the vector

z2
t is constructed as a function and passed to the UT an approximation to the true expectation will

be provided byẼ{z2
t } ≈

〈
z2

t

〉

qt
.

Gradient of Esde w.r.t. the marginal mean vector mt : To compute this gradient we need to

write the energy functionEsdeas an integral and then differentiate with respect tomt .

∇mt Esde(t) = ∇mt

[
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

]

(D.163)

=
1
2

∇mt

∫
(f(xt)−gL(xt))

⊤
Σ
−1(f(xt)−gL(xt))q(xt)dxt (D.164)

=
1
2

∫
(f(xt)−gL(xt))

⊤
Σ
−1(f(xt)−gL(xt))∇mt q(xt)dxt (D.165)

=
1
2

∫
(f(xt)−gL(xt))

⊤
Σ
−1(f(xt)−gL(xt))S−1

t (xt −mt)q(xt)dxt (D.166)

=
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))S−1

t (xt −mt)
〉

qt

(D.167)

=
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))S−1

t xt

〉

qt

− 1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

S−1
t mt (D.168)

=
1
2

〈

z⊤t Σ
−1ztS−1

t xt

〉

qt

−Esde(t)S−1
t mt (D.169)

where the vectorzt is a shorthand notation for(f(xt)−gL(xt)) and for the Gaussian distribution

q(xt ∣mt ,St), we have used∇mt q(xt) = S−1
t (xt −mt). This is proven as follows:
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Proof:

∇mt q(xt) = ∇mt

[

(2π)−
D
2 ∣St ∣−

1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)

]

(D.170)

= (2π)−
D
2 ∣St ∣−

1
2

(

∇mt e
− 1

2(xt−mt)
⊤S−1

t (xt−mt)
)

(D.171)

= (2π)−
D
2 ∣St ∣−

1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)∇mt

(

−1
2
(xt −mt)

⊤S−1
t (xt −mt)

)

(D.172)

= q(xt)

(

−1
2
(−2S−1

t (xt −mt))

)

(D.173)

= S−1
t (xt −mt)q(xt) (D.174)

Having precomputed theEsde(t) as shown in Equation (D.162), the new approximate expecta-

tion that one has to compute is̃E{z⊤t Σ−1ztS−1
t xt} (see Equation D.169).

Gradient of Esde w.r.t. the marginal covariance matrix St : For the gradient ofEsde with

respect toSt , a similar procedure is followed. FirstEsde is expressed as an integral and then the

requested derivative is computed.

∇St Esde(t) = ∇St

[
1
2

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

]

(D.175)

=
1
2

∇St

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

(D.176)

=
1
2

∫
(f(xt)−gL(xt))

⊤
Σ
−1(f(xt)−gL(xt))∇St q(xt)dxt (D.177)

=
1
2

∫ (

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

× 1
2

(

S−1
t (xt −mt)(xt −mt)

⊤S−1
t −S−1

t

)

q(xt)

)

dxt (D.178)

=
1
4

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))S−1

t (xt −mt)(xt−mt)
⊤S−1

t

〉

qt

− 1
4

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))

〉

qt

S−1
t (D.179)

=
1
4

〈

(f(xt)−gL(xt))
⊤
Σ
−1(f(xt)−gL(xt))S−1

t (xt −mt)(xt−mt)
⊤S−1

t

〉

qt

− 1
2

Esde(t)S−1
t (D.180)

=
1
4

〈

z⊤t Σ
−1ztS−1

t (xt −mt)(xt −mt)
⊤S−1

t

〉

qt

− 1
2

Esde(t)S−1
t (D.181)

Hence the new expectation that has to be approximated with the UT isẼ{z⊤t Σ−1ztS−1
t (xt −

mt)(xt−mt)
⊤S−1

t }. Furthermore the gradient∇St q(xt) (see step D.177), is provided below:
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Proof:

∇St q(xt) = ∇St

(

(2π)−
D
2 ∣St ∣−

1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)

)

(D.182)

= (2π)−
D
2

(

∇St ∣St ∣−
1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)+ ∣St ∣−

1
2 ∇St e

− 1
2(xt−mt)

⊤S−1
t (xt−mt)

)

(D.183)

= (2π)−
D
2

(

− 1
2
∣St ∣−

1
2 S−1

t e−
1
2(xt−mt)

⊤S−1
t (xt−mt)

+ ∣St ∣−
1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)∇St

(

−1
2
(xt −mt)

⊤S−1
t (xt −mt)

))

(D.184)

= (2π)−
D
2

(

− 1
2
∣St ∣−

1
2 S−1

t e−
1
2(xt−mt)

⊤S−1
t (xt−mt)

+
1
2
∣St ∣−

1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)

(

S−1
t (xt −mt)(xt −mt)

⊤S−1
t

))

(D.185)

= (2π)−
D
2 ∣St ∣−

1
2 e−

1
2(xt−mt)

⊤S−1
t (xt−mt)× 1

2

(

S−1
t (xt −mt)(xt −mt)

⊤S−1
t −S−1

t

)

(D.186)

=
1
2

(

S−1
t (xt −mt)(xt−mt)

⊤− I
)

S−1
t q(xt) , (D.187)

with I ∈ℜD×D the identity matrix.

Gradient of Esdew.r.t. the (hyper-) parameters� andΣ: The general multivariate expressions

of the gradients with respect to the (hyper-) parameters are given in Equation (D.189), for the drift

parameter vector

∇�Esde(t) =
〈

(f(xt)−gL(xt))
⊤
Σ
−1(∇�f(xt))

〉

qt

(D.188)

=
〈

z⊤t Σ
−1(∇�f(xt))

〉

qt

, (D.189)

and in Equation (D.191) for the system noise matrix

∇ΣEsde(t) =−
1
2
Σ
−1

〈

(f(xt)−gL(xt))(f(xt)−gL(xt))
⊤
〉

qt

Σ
−1 (D.190)

=−1
2
Σ
−1

〈

ztz⊤t
〉

qt

Σ
−1 . (D.191)

It is obvious from Equation (D.189), that before computing this expectation, with the UT ap-

proximation, the gradient of drift function with respect to the drift parameters must be computed

in advance for the system studied. On the contrary the gradient with respect to the system noise

requires no additional computations since the required expectation
〈
ztz⊤t

〉

qt
has already been ap-

proximated when computing the energy termEsde(see Equation D.162).

179



E Approximate solutions of the

moment equations

Chapter 4 shows that the dynamics of the proposed linear approximationqt to the true posterior

processpt can be described by a set of ordinary differential equations; one forthe marginal, at

time ’t’, means Eq. (4.12) and one for the variances Eq. (4.13). The solution to the above ODEs

is provided by a first order Euler discretisation scheme with a small time step (e.g. δt = 0.01), to

achieve good accuracy. Chapter 6 hinted that the approximation of the variational parametersAt

andbt with local polynomials can further improve the precision of the ODE solutions byapplying

higher order integration schemes (such as Runge-Kutta 2’nd order). However, the ODEs must still

be discretised and solved iteratively, which reduces the applicability of the algorithm to very high

dimensional systems.

This Appendix provides approximate solutions to the moment equations for the marginal

means and variances and shows that under the current variational framework, closed form solu-

tions for Equations (4.12) and (4.13) are not possible. Nevertheless, future work in parametrising

and making further assumptions about the linear variational parameterAt might provide more ef-

ficient ways to solve the moment equations. To ease the presentation of the following derivations

only univariate systems are considered.
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E.1 Marginal means

The equation that provides the marginal mean (Chapter 4) is given by:

dm(t)
dt

=−a(t)m(t)+b(t) , m(t0) = m0 . (E.1)

with m0 ∈ℜ denoting the initial condition anda(t), b(t) ∈ℜ the time dependent linear and offset

variational parameters.

Set:

Q(t) =−
∫ t

t0
a(k)dk , with (E.2)

dQ(t)
dt

=−a(t) . (E.3)

Then differentiatingm(t)exp{−Q(t)} w.r.t. the timet, yields:

d
dt

(m(t)exp{−Q(t)}) = ṁ(t)exp{−Q(t)}+m(t)
d
dt

exp{−Q(t)} (E.4)

= ṁ(t)exp{−Q(t)}−m(t)
dQ(t)

dt
exp{−Q(t)} (E.5)

= ṁ(t)exp{−Q(t)}+m(t)a(t)exp{−Q(t)} (E.6)

=

(

ṁ(t)+m(t)a(t)

)

exp{−Q(t)} (E.7)

= b(t)exp{−Q(t)} , (E.8)

wheredQ(t)
dt =−a(t), from Equation (E.3), and ˙m(t) denotes the time derivative.

Integrating both sides of Equation (E.8) yields:

∫ t

t0

d
dk

(m(k)exp{−Q(k)})dk=
∫ t

t0
b(k)exp{−Q(k)}dk . (E.9)

The first integral on the right hand side of Equation (E.9) is:

∫ t

t0

d
dk

(m(k)exp{−Q(k)})dk= [m(k)exp{−Q(k)}]tt0 (E.10)

= m(t)exp{−Q(t)}−m(t0)exp{−Q(t0)}
︸ ︷︷ ︸

=1

(E.11)

= m(t)exp{−Q(t)}−m0 , (E.12)

wherem(t0) = m0 and the exponent−Q(t) for t = t0 becomes−Q(t0) =
∫ t0

t0 a(k)dk= 0, therefore

exp{0}= 1. Hence:

m(t)exp{−Q(t)}−m0 =
∫ t

t0
b(k)exp{−Q(k)}dk . (E.13)

Finally, multiplying both sides of Equation (E.13) with exp{Q(t)} and then re-arranging results:

m(t) =

(

m(t0)+
∫ t

t0
b(k)exp{−Q(k)}dk

)

exp{Q(t)} . (E.14)
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At this point one can make use of the polynomial approximations ofa(t) andb(t):

ã(t) =
Ma

∑
i=0

ait
i and b̃(t) =

Mb

∑
i=0

bit
i . (E.15)

whereMa, Mb∈N denote the order of the polynomial approximation fora(t) andb(t) respectively.

Here, unlike the presentation in Chapter 6, the order of the polynomials for the two variational

parameters is allowed to be different to provide a more general presentation.

To compute the exponential exp{Q(t)} we make use of the above result:

−
∫ t

t0
a(k)dk≈−

∫ t

t0
ã(k)dk (E.16)

≈−
∫ t

t0

Ma

∑
i=0

aik
idk (E.17)

≈−
Ma

∑
i=0

ai

∫ t

t0
kidk (E.18)

≈−
Ma

∑
i=0

ai

[
ki+1

i+1

]t

t0

(E.19)

≈−
Ma

∑
i=0

ai

[
t i+1− t i+1

0

i+1

]

, (E.20)

which leads to:

exp{Q(t)} ≈ exp{−
Mo

∑
i=0

ai

[

t i+1− t i+1
0

i+1

]

} . (E.21)

The second integral on the left hand side of Equation (E.9) is:
∫ t

t0
b(k)exp{−Q(k)}dk≈

∫ t

t0
b̃(k)exp{−Q(k)}dk (E.22)

≈
∫ t

t0

Mb

∑
i=0

bik
i exp{−Q(k)}dk (E.23)

≈
Mb

∑
i=0

bi

∫ t

t0
ki exp{−Q(k)}dk (E.24)

≈
Mb

∑
i=0

bi

∫ t

t0
ki exp{

Ma

∑
j=0

a j

[

k j+1− t j+1
0

j +1

]

}dk . (E.25)

Hence, the final expression for the marginal means becomes:

m(t)≈
(

m0+
Mb

∑
i=0

bi

∫ t

t0
ki exp{

Ma

∑
n=0

an

[

kn+1− tn+1
0

n+1

]

}dk

)

exp{−
Ma

∑
j=0

a j

[

t j+1− t j+1
0

j +1

]

} . (E.26)

Setting the initial time instant tot0 = 0 yields:

m(t)≈
(

m0+
Mb

∑
i=0

bi

∫ t

0
ki exp{

Ma

∑
n=0

an

[
kn+1

n+1

]

}dk

︸ ︷︷ ︸

Int1

)

exp{−
Ma

∑
j=0

a j

[
t j+1

j +1

]

} . (E.27)

This equation, to the author’s best knowledge, does not have a closed form solution because in-

tegral “Int1” cannot be solved analytically for arbitrary values ofMa andMb (Gradshteyn and

Ryzhik, 2007).
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E.2 Marginal variances

In a similar way the equation that gives the marginal variance is given by:

dst
dt

=−2atst +σ2 , s(t0) = s0 (E.28)

with s0 ∈ℜ denoting the initial condition andσ2 ∈ℜ the (constant) system noise variance.

Setting:

Z(t) =−2
∫ t

t0
a(k)dk with

dZ(t)
dt

=−2a(t) (E.29)

and working the same way as in the previous section the following equation is derived:

s(t)≈
(

s0+σ2
∫ t

t0
exp{−Z(k)}dk

)

exp{Z(k)} , (E.30)

which leads to the final expression for the approximate marginal variances:

s(t)≈
(

s0+σ2
∫ t

t0
exp{2

Ma

∑
j=0

a j

[

k j+1− t j+1
0

j +1

]

}dk

)

exp{−2
Ma

∑
i=0

ai

[

t i+1− t i+1
0

i+1

]

} (E.31)

and fort0 = 0 the expression simplifies to:

s(t)≈
(

s0+σ2
∫ t

0
exp{2

Ma

∑
j=0

a j

[
k j+1

j +1

]

}dk

)

exp{−2
Ma

∑
i=0

ai

[
t i+1

i+1

]

} (E.32)
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F Gaussian moments and

related derivatives

This Appendix provides the uncentered moments, up to and including 8’th order, of a univariate

Gaussian random variablext , wheremt andst are respectively the marginal mean and variance at

time ’t’.

Uncentered moments:

〈
x0

t

〉

qt
= 1 (F.1)

〈
x1

t

〉

qt
= mt (F.2)

〈
x2

t

〉

qt
= m2

t +st (F.3)
〈
x3

t

〉

qt
= m3

t +3mtst (F.4)
〈
x4

t

〉

qt
= m4

t +6m2
t st +3s2

t (F.5)
〈
x5

t

〉

qt
= m5

t +10m3
t st +15mts

2
t (F.6)

〈
x6

t

〉

qt
= m6

t +15m4
t st +45m2

t s2
t +15s3

t (F.7)
〈
x7

t

〉

qt
= m7

t +21m5
t st +105m3

t s2
t +105mts

3
t (F.8)

〈
x8

t

〉

qt
= m8

t +28m6
t st +210m4

t s2
t +420m2

t s3
t +105s4

t (F.9)
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Appendix F GAUSSIAN MOMENTS AND RELATED DERIVATIVES

From here, it is easy to derive the related derivatives with respect to themarginal means and

variances at each time ’t’.

Derivative of
〈
xk

t

〉

qt
w.r.t. mt :

∇mt

〈
x0

t

〉

qt
= 0 (F.10)

∇mt

〈
x1

t

〉

qt
= 1 (F.11)

∇mt

〈
x2

t

〉

qt
= 2mt (F.12)

∇mt

〈
x3

t

〉

qt
= 3(m2

t +st) (F.13)

∇mt

〈
x4

t

〉

qt
= 4m3

t +12mtst (F.14)

∇mt

〈
x5

t

〉

qt
= 5m4

t +30m2
t st +15s2

t (F.15)

∇mt

〈
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t

〉

qt
= 6m5

t +60m3
t st +90mts

2
t (F.16)

∇mt
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t

〉

qt
= 7m6
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t st +315m2

t s2
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t (F.17)

∇mt

〈
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t

〉

qt
= 8m7

t +168m5
t st +840m3

t s2
t +840mts

3
t (F.18)

Derivative of
〈
xk

t

〉

qt
w.r.t. st :

∇st

〈
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t

〉

qt
= 0 (F.19)

∇st
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t

〉

qt
= 0 (F.20)

∇st
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t

〉
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∇st

〈
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t

〉
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= 3mt (F.22)

∇st

〈
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t

〉

qt
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t +st) (F.23)
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〈
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t

〉
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