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Thesis Summary

This thesis is concerned with approximate inference in dynamical systeons,arvariational
Bayesian perspective. When modelling real world dynamical systembastiicdifferential equa-
tions appear as a natural choice, mainly because of their ability to modeligeeafdhe system
by adding a variant of some stochastic process to the deterministic dynangose Hnference
in such processes has drawn much attention. Here two new extendewvérdemare derived and
presented that are based on basis function expansions and locabpayapproximations of a
recently proposed variational Bayesian algorithm. It is shown that theemésmsions converge
to the original variational algorithm and can be used for state estimation (simgptiHowever,
the main focus is on estimating the (hyper-) parameters of these systemsifijgardimeters and
diffusion coefficients). The new methods are numerically validated ongerahdifferent sys-
tems which vary in dimensionality and non-linearity. These are the Ornstdenbkck process,
for which the exact likelihood can be computed analytically, the univariadéhaghly non-linear,
stochastic double well and the multivariate chaotic stochastic Lorenz 'é@81{8nsional model).
The algorithms are also applied to the 40 dimensional stochastic Lorenzs@gmsyin this inves-
tigation these new approaches are compared with a variety of other wathkmethods such as
the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the deednted Kalman
filter (for jointly estimating the systems states and model parameters) and fldlcoeatraint
4D-Var. Empirical analysis of their asymptotic behaviour as a function esénlation density or
length of time window increases is provided.

Keywords: Bayesian inference, variational techniques, dynamical systems, stiacha
differential equations, parameter estimation
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Glossary & Mathematical Notation

The need for a unified notation in the field of data assimilation has been wdlliss&a (Ide et al.,
1997). In order to assist the reader with the mathematical notation andrglassed throughout
this thesis, the following tables summarize the most commonly found symbols aressixms.
Each term will be defined properly, when first appeared and furtbenitions and clarifications
will be provided when necessary. As a general rule bold fonts arm fesevectors or matrices,
while normal fonts for scalars. Lower-case Latin letters will denote ssalawvectors, whilst
upper-case matrices. Greek letters will denote model parameters.

For better presentation the notation has been organised in tables. Figbtearesome com-
monly found mathematical symbols.

| Mathematical symbols and expressions Description \

~ is distributed as
O is proportional to

~ approximately equal

0a partial derivative with respect to scalar
Oa gradient with respect to vectar
In natural logarithm

o(n) of ordern

pdf probability density function

W.I.L. with respect to

Next are considered the sets of numbers. In this thesis the most frequsetlysat is the
one of real numbers. However, the set of natural numbers is used inthexing the elements of
vectors or matrices, with the asterisk symbgldenoting exclusion of the zero number.

| Sets| Description \
O set of real numbers
N® | set of natural numbers (* excluding zerp)
ob D-dimensional set of real numbers

To avoid confusion the vectors are considered column-wise unlesposats When a vector
has no index is assumed to be a (continuous) random variable. The musbecoindex ist’ and
denotes (continuous) time dependence (e.g. the state wgktéior discrete time dependence the
index k' is more favourable.

| Vectors | Description |
x € OP real valued column vector
X € [ i'th element of the vectox
x; € OP (continuous) time dependent state vector
xx € OP | (discrete) time dependent state vector, e= X—t,
yk € OP (discrete) time dependent observation vector

11



GLOSSARY & MATHEMATICAL NOTATION

Matrices follow as a natural extension of vectors. Only upper-casedetterused and unless
otherwise stated they are considered squarelI where 'D’ is the number of rows /columns.
If every element of a matrix is time dependent, then for notational convemidne dependency
will be denoted as subscript on the whole matrix rather than on each indivediement (see
Appendix D).

| Matrices | Description
K ¢ OP*P real valued matrix
Kic € O r'th row c'th column scalar element @€
K" transposed matrix
K-t inverted matrix
tr{K} trace of matrix
IK] determinant of matrix
diagK) diagonal elements of matrix
| € OP*P Identity matrix

To identify a specific class of distribution, calligraphic capital letters ard,umech as\’ormal
or Gamma distribution. The terms 'distribution’ and 'density’ are used interchatrigeand the
letter 'p’ is used for a general type of distribution, with the type of it (e.g. priostpdor or
likelihood) given individually, at each occurrence. Although an amfsmathematical notation,
this approach is more compact and commonly used.

| Distributions | Description \
N (W, A) Normal (Gaussian) distribution
G(a,B) Gamma distribution
G 1(ab) Inverse Gamma distribution
p(x) true marginal distribution
q(x) approximate marginal distribution
p(y|x) conditional distribution ofy givenx
p(y,X) joint distribution ofy andx
P(XoN) shorthand notation gb(xo, X1, ..., XN)

Some special notation that is used to describe the variational frameworlapte?t{4) is given
in the following table. Proper definitions of the vectors, matrices and furetoga also given in
the same section.

| Special notation | Description |
f(x) € OP drift function
oL(x) € OP (linear) approximation function
6 c OP drift parameter vector
w; € OP Wiener process
> e ObxP system noise covariance matrix
R e OP*P measurement error covariance matrix
H e 0Obxb (linear) observation operator
E{X}qx expectation ok w.r.t. q(x)
{X)q shorthand notation d& {X}q(x)
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Chapter 1 INTRODUCTION

“1 cannot believe that God plays dice with the cosmos.
— Albert Einstein, German physicist.

“Consideration of black holes suggests, not only that God does playdice,
that he sometimes confuses us by throwing them where they can't be seen
— Stephen W. Hawking, British physicist.

1.1 How random are phenomena?

One of the main characteristics that distinguish the human species from tlog ttes species on
this planet is its intrinsic curiosity to better understand the world that sursotimeasin. Unlike the
other animals, humans are not content to satisfy only their basic needsstindts) like thirst,
hunger, self-preservation, breeding, etc. What is more interestingg isuiiman ability to create
guestions that themselves, cannot answer.

In the early beginnings of civilisation, humans were faced with a lot ofiggezoncerning
mostly the natural phenomena. The answer, at that time, was simple; fgtremgrwas respon-
sible a “God”. A God was raising the sun every morning and took it back imitet, another
God was responsible for bringing rain, someone else was the one “mgiistumans with natu-
ral disasters, when they were misbehaving and so Biowever, the advanced ability of humans
(compared to the other animals) to observe and draw conclusions helpedingfpatterns and
creating physical “laws” that describe the observed phenomena. Ultintagelyoal of science is
to understand how things work and if possible to make predictions about(tbeell, 2007).

Pierre Simon Laplace, the famous French mathematician and physicist, laidititafmns of
deterministic science. He believed that there exists a set of well definati@tgithat predict ev-
erything in the universe (even human behaviour) given an accuraté aaitidition of the system;
i.e. If it was possible to specify the exact position and momentum of every lparica single
time instant, then the evolution of the universe could be uniquely determined.

The scientific belief that the whole cosmos is completely and uniquely determyreeddt of
equations that describe everything was very strong, until the beginhthg @0’th century, when
the work of two German physicists, Max Planck with tipgantum principle(early 1900) and
Werner Heisenberg with thencertainty principle(1926), laid the foundations of what is known
today asQuantum Theorpr Quantum MechanicsThe uncertainty principle, roughly states that
the more accurately the position of a particle is measured, the greater théaimtgdn its mo-
mentum and vice versa. Therefore, even if Laplace’s belief was rightasingle mathematical
equation, given an infinitesimally accurate initial condition can predict ¢vieny, then thaincer-

tainty principle if accepted, makes sure that this cannot happen because we woeideeble

1Some people still have the same beliefs about the world that surrounadsays
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Chapter 1 INTRODUCTION

to measure the initial conditions infinitesimally accurate. Therefore, natutelitsgés human
curiosity to perform predictions.

Even though quantum mechanics imply that matter is by definition indeterministicaand c
be described only in a probabilistic way, someone can argue that wheamp@andom to us is
because we are still unable to understand the underlying dynamics tinetspihe electron from
one quantum state to the other. Albert Einstein, one of the most recogriesdists of the
past century, contributed a lot to the development of quantum theorydirhé&awas awarded a
Nobel prize), but was a deeply religious person and refused to aitegpandomness exists in the
universe and believed, until the very end of his life, that the univepseates under completaw
and Order

Nevertheless, there is room for both scientific beliefs (deterministic artbnanto co-exist.
Even though quantum phenomena are mostly observed in microscopic leselaveraging over
a huge number of particles, phenomena can still be adequately descyiloedelbministic laws.

After all, following Ockhams’ Razor: “a theory should be no more complic#ted necessary”.

1.2 From ODEs to SDEs

Consider a system whose macroscopic behaviour (i.e. state of the sy¥tean be described by

an ordinary differential equation (ODE) such as:
dx = f(x)dt. (1.2)

This describes, roughly, that the change in the state of the systgrduring the time interval
dt is proportional to that time incremedt, with a coupling coefficienf (x) that depends on the
state of the system at each titnén the deterministic case, given an initial state of the systgm
there will be a unique solution of Equation (1.1). Another way to see Equétidyis in a form

of anintegral equation That is:
t
X :xo+/0  (x6)ds. (1.2)

In reality, however, systems most often incorporate unknown foredsyawn but very com-
plex to be represented, that influence their macroscopic behaviouefkiomp, 1993). Often the
termnoise is used to describe these unknown components that cause the systectustéluTo
capture these fluctuations a random (stochastic) term is introduced t@theys model (Equation
1.1). Hence, the evolution of the system can be better described by atiocegof the following
form:

dx = f(x)dt+0(x)dz, (1.3)

1To ease the notation, this section considers only univariate examples.
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Chapter 1 INTRODUCTION

where f(x) is thedrift function characterising the local trend(x;) is the diffusion function,
which influences the average size of fluctuations¢pfandz is the noise processvhich often
models the effect of faster dynamical modes not explicitly represented idrifiéunction but
present in the real system.

The corresponding integral equation is:

X :xo+/0t f(xs)ds+/ot0(xs)dzs (1.4)

The question that now arises &nce there is no knowledge about the noise teriend its
effect on the evolution of the system (0éx)dz), how can this equation be solved and determine
the evolution of the systém

The classical theory of stochastic differential equations is based ossheation of5aussian
white noisg(Penland, 2003) and itparent” , the Wiener processAs described in Chapter 2, the
Wiener process is “almost everywhere” non-differentiable. Theegfstrictly mathematically, it
is not permissible to write down the following expressicﬁﬁ%. However, in a more loose sense
it is assumed that this time derivative exists (in a general way) and that & &qthe Gaussian
white noise. Hence:

dwt

at =& = dw = &dt (1.5)

whereg; € [J is the time dependent Gaussian white noise. Therefore, by substitutingiige no

process; with a Wiener process; and the above result (Eq. 1.5) into Equation (1.3), yields:

dx = f(x)dt+o(x)dw (1.6)

= f(x)dt+0(x)&dt, (1.7)

which is assumed here to provide a general expression for a stochtistierdial equation (SDE).

Example

To give an example of the above discussion a simple univariate systensidemd, with dynam-
ics described by the following ODE (Eq. 1.8). This system is driven byeefb(x ) = 8sin(x),
and an example simulation (trajectory), on a five time unit intefvak [0, 5], is shown in Figure
1.1 (left panel, dashed black line). The corresponding SDE is giveonation (1.9), and a real-
isation with an additive noise process (iceis independent of the staxg), is illustrated in Figure

1.1 (left panel, solid blue line).

(:j)tq =0sin(x) and (1.8)
dx e dwt
e Bsin(x)+o at (1.9)
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Chapter 1 INTRODUCTION

In practice, however, the continuous time equations are transformed taibaiete time coun-
terparts, as shown in Equations (1.10) and (1.11) respectively. Hamepde Euler scheme was
chosen for the discretisation of both ODE and SDE (Kloeden and Plat@f),A8hich imposed a
relatively small time stept = oty 1 — &ty = 0.001. For this example the drift parameter was set to

0 = 4 and the system noise to= 1.

Oxx = Bsin(xc) &t and (1.10)

Sy = Osin(x) 8t + o3t g, (1.11)

wheredxy = Xk+1 — Xk andgy ~ A(0,1).

0 L L
0 1 2 3 4 5 0 025 05 0.75 1
t t

Figure 1.1:Left panel: An example of an ordinary differential equation (dashed black line)gers
the corresponding stochastic differential equation (solid blue line), sintutate five time units
interval (i.e.T = [0,5]). Both trajectories share the same initial state conditigh&nd have the
same setting for the drift parametge 4. The effect of the added random procesg (s obvious
even from early times in the simulating windoRight panel: shows only the first time unit of
the simulation, to emphasise how fast the SDE deviates from the ODE evertth@ygstart from
the exact same point.

Figure 1.1 shows that the solution for the ODE (dashed black line), is smadtigigen a
fixed initial conditionxg, is unique. On the contrary, the solution for the SDE (solid blue line) is
very rough and even though both solutions start with the same initial conditiateyiates from
the deterministic evolution in a random way. Moreover, every time that the SBBNed the

trajectory is different, as a result of the influence of the random noseepsm;.
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Chapter 1 INTRODUCTION

1.3 Bayesian inference

As implied earlier in Section 1.1, phenomena that appear to evolve in a randarmemzan be
described in a probabilistic way. Shafer (1992), argues that probabditynean many things.
The two most prevalent approaches, of probability theory, ardrédugientistand theBayesian
interpretations. Roughly speaking, the frequentist approach inteifoftseogorov’'s Axioms for
probability, as frequencies. That means the probability of an event isrgeriom frequency with
which the event occurs with a specific experimental setup. Figure 1.@sstno example of the
probability of appearing “Heads” (blue 'x’ symbol) or “Tails” (red cirshe when tossing a fair
coin. When the number of experimental trials (coin tosses) increasesdhahilities of both
events tend to 12 (horizontal dashed line), as expected for a “fair” coin.

However, the frequentist approach to probabilities requests not ongnfevent to have hap-
pened, but also to repeat many times (infinite in theory), in order to applpkzapility on that
event. On the contrary, the Bayesian approach interprets the axiomgees®f belief (i.e.
probabilities can be assigned to quantify beliefs on events that have ioayeened). It is not
the intention here to get involved into philosophical discussions on whidbapilistic interpre-
tation is correct. Within this thesis the Bayesian approach is adopted and thedsieéscribed
later are developed in a Bayesian inference framework. The main re&abacause within the
Bayesian paradigm uncertainty, in making inference, is quantified diregtbyrdbabilities based

on statistical data analysis, therefore it provides a more principled frarkdarats treatment.

*x head
e tail

0.8 - - -p(head) = p(tail)

o
2}
T

o
IS
x

x”gi

frequencies
H
H
E 3
v
'
=
e
x P
*-,
R B
H
H
ool
Y

0.2r

10’ 10" 10° - 10° 10*
number of trials

Figure 1.2: Frequency of a “fair” coin, after 3100 tosses. As the number of trials increases the
frequency that the heads (blue 'x’ marks) and tails (red circles) apeeds to the true probability
of 1/2 (horizontal dashed line).

In a Bayesian inference framework (Gelman et al., 1995), everythingpiessed with prob-
ability distributions. First the problem must be formulated with a “full probabilitydeit, which
is basically the joint probability density of all the quantities of interest (oleskand unobserved).

Then, after the prior beliefs have been quantified, in terms of prior pilityadensity functions
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Chapter 1 INTRODUCTION

(pdfs), inference can be characterised as estimating the conditiorgtydehthe quantities of

interest, given the available observations. In practice, this can be adhising Bayes’ rufe

p(Xly) = p(ypx&';’(x) . with 0< p(y) <o, (1.12)
O p(y[x)p(x) . (1.13)

In Equation (1.13)p(x) is theprior density function, which incorporates all prior beliefs about
the quantityx before seeing any data(y|x) is thelikelihood of the observed valugsgiven the
current estimates of, p(y) is themarginal likelihood(or evidence) which must be bounded and
p(x]y) is the posterior density of the quantities of primary interest conditional on the available
observations.

Bayesian inference is very popular in the areas of data assimilation (WikIBentiner, 2007)
and machine learning (Tipping, 2006), mainly because it provides a hatayato update the

current estimates in the light of new observations, by iterating the Bayesmil€1.13).

1.4 Thesis outline

Chapter 1 begins with a general discussion about the source of stochasticityn@domaess)
found in real world systems and provides a small discussion, including a sexateple, on the
difference between a deterministic system described by an ODE and astiogdystem defined
by an SDE. The viewpoint on why the Bayesian paradigm is appropriateeifwants to make

inference about dynamical systems is also highlighted.

Chapter 2 gives some necessary theoretical definitions of stochastic processeding some
properties, to make the rest of the thesis more self-contained. The emjzhasisheMarkov

processesnd some characteristic examples are illustrated. Diffusion processes toild the
notion of discrete time observation is clarified. The problem of optimal estimafitresystem
state and model parameters, given a discrete set of noisy observatefined. Although an
exhaustive review of the methodologies that deal with this problem caendabmed an effort is

made to collect and present the basic methods on this subject.

Chapter 3 summarizes and briefly reviews the dynamical models that are used in the-follow
ing chapters to validate the new approximation algorithms that developed. nivegiate linear

Ornstein- Uhlenbeck process (OU) is introduced and the non-lineablBdtell (DW) follows.

INamed after the English mathematician Thomas Bayes (1702 - 1761¢sBagorem as described in his work,
“An Essay towards solving a Problem in the Doctrine of Chances”, whBghed after his death at thBhilosophical

Transactions of the Royal Society of London (1763)
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To test how the methods developed scale to multivariate systems a stochastio wéthe three
dimensional chaotic Lorenz '63 system (L3D) is implemented. The last systesidered is the

forty dimensional stochastic Lorenz '96 (L40D).

Chapter 4 reviews in detail the variational Gaussian process approximation (VGAgéyitam,
for partially observed diffusions that was first introduced in Archambetaal. (2007). This is
essential because the VGPA algorithm provides the backbone of botismxts that will follow
in the next chapters. The state estimation (smoothing) framework is examisgdnith two

approaches to estimating the model (hyper) parameters following.

Chapter 5 presents an extension of the aforementioned VGPA algorithm in terms offbasis
tion expansions defined globally over the whole time domain of the inferenaowinlnitially,

the main characteristics and benefits of using RBFs are highlighted and ¢hgertbral multivari-
ate framework is derived. Numerical simulations test its convergencepies comparing to the

original VGPA algorithm and results of estimating (hyper-) parameterslsoareciuded.

Chapter 6 provides an alternative re-parametrisation of the original VGPA framlepusing
polynomial approximation defined locally between each pair of observatibinis approach al-
though similar to the one of the basis function expansions, as presentedpteC8, gives a more

appropriate approximation framework with beneficial characteristics.

Chapter 7 compares the previously derived extensions with a variety of well knowthade of

state and parameter estimation. The algorithms are briefly described andrtparismn results
are presented separately for state and parameter estimation. The asymppmitigs of the local
polynomial approximation (as defined in Chapter 6), as the number ofvaltesrs or length of

time window increases, is empirically thoroughly analysed.

Chapter 8 summarizes the work and provides possible future research directions.

1.5 Disclaimer

This thesis is submitted for the degree of Doctor of Philosophy (Ph.D). Tk presented here
is original and has not been submitted previously for a degree, diplomaatification at another
university. However, parts of the work have been published an@pted in the following papers,

conferences and seminars (in chronological order):
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e Appendix A, which contains the full derivations of the original VGPA framek, has been
submitted as a Non-linearity and Complexity Research Group (NCRG) tethepzat in
Vrettas et al. (2008).

e Early theoretical work on both extensions, as described in Chapterd 6,dras been ac-
cepted and presented at the Bayesian Inference for Stochastissge¢8ISP) workshop,

June, 2009.

e The complete theoretical framework (for the univariate case) of the hasition expan-
sion (Chapter 5), along with some preliminary results on the univariate DW¥éraylsave
been presented at the European Symposium on Artificial Neural NetwWB&ANN) and
published in the conference proceedings (Vrettas et al., 2009). liticagdan extended
version of the paper containing the full multivariate RBF framework andltesn higher-

dimensional systems has been published in Neurocomputing (Vrettas etléib)20

e Comparison results, mainly on state estimation, of the VGPA algorithm with methods im-
plemented in Chapter 7, have been presented at the European Geesdienen (EGU)
conference, April 2010.

e The local polynomial extension along with many results included in Chaptersl @ amave

been submitted as a journal paper to Physica D (Vrettas et al., 2010a).

¢ Finally, many views and approaches presented here have been distutie Non-linearity

and Complexity Research Group (NCRG, Aston University) seminarg\@ral occasions.
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Chapter 2 PROBLEM STATEMENT AND EXISTING METHODOLOGIES

“Probable is what usually happefs.
— Aristotle, Greek philosopher.

2.1 Foreword

Chapter 2 introduces the reader to the problem this thesis addressedl, @stive main categories
of methodologies that have been developed to solve it. In order to do thatatéssary to first
give a review of the main mathematical elements that are used later to built the prgatfithe
approximation methods that developed. A basic level of probability theopsisnaed (e.g. events,
sample spaces, probabilities, etc.). Instead of rigorous definitions, ietuitlys of presenting the
essential building blocks are preferred. A more detailed presentatiore@ubiject of probability

theory and stochastic processes is given by Papoulis (1984).

2.1.1 Chapter outline

The chapter is organised as follows. Initially a definition of a stochasticessois given, includ-
ing some useful properties. Emphasis is on so-calladkov processeand some characteristic
examples such as the Gaussian and the Wiener processes are illustraathpdrtant class of
diffusion processes follows and the notion of discrete time observatiorriBezla After the basic
elements are introduced, the inference problem (from a Bayesianegévs) that provides the
focus of this work is properly defined. A review of the methods that atdirderence in partially

observed diffusion processes is given. The chapter concludes disic@ssion.

2.2 Stochastic processes

Stochastic processes (also known as random processes) arisglyaiuange of different con-
texts from financial modelling (e.g. the stock market, exchange rate fluatggtimological mod-
elling (e.g. a patient’s EEG) to environmental modelling (e.g. the temperatupoaity. It can be
seen intuitively as a physical phenomenon which evolves in time in a randomeoloose sense,
probabilistic way. In this section a definition of a stochastic process will engihighlighting
some important properties as well as providing an intuitive view, based roe sbaracteristic
examples. It is not the intention to reproduce all the theory around sticipagcesses (which
would require proper & calculus). Instead it only provides the basic definitions and propertes th
are necessary for the rest of the thesis. An informal and short irdtioduo stochastic processes
can be found in Miller (2007). For a more complete and detailed study of thjedthere are
excellent textbooks such as Honerkamp (1993); Gardiner (2008 Kkeden and Platen (1999),

where all the concepts are provided in a formal mathematical manner.
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Chapter 2 PROBLEM STATEMENT AND EXISTING METHODOLOGIES

Definition 2.2.1 A stochastic process is a collection of random variab(es), indexed by a set,
which here is interpreted as time. Hence i€, is the time set under consideration affe, A, P)

a common probability space, thér; }i1 is astochastic process.

Thus, it can be seen as a function of two varia@lesQ — [0 such that:
e X(t,-) : Q — O isarandom variablg't € T.
o X(-,w): T — O is arealizatior’/ w e Q.

If T is a countable set (discrete case) the stochastic process isdialiegte in timeotherwise if
T is an interval (continuous case) the stochastic process is knoegnéguous in time

Some important properties, that can characterise whole classes ofsiogacesses are:

Property 2.2.1 Given a partition of time, = {t; <ty < --- < t,} and a positive quantity ¢ 0,
a stochastic process #rictly stationary if, Vt € T the joint distributiong(x;, , Xt,, - - ., Xt,) and
(Xt +d» Xtp4d, - - - » Xt,+d) @re identically distributed. That is, time displacements leave the joint dis-

tributions unchanged.

Property 2.2.2 Given a partition of time, = {t; <t, < --- < ty}, a stochastic process is said to
haveindependent incrementsif, vVt € T the random variables ;1 —xt,), with j=1,2,....,n—1

are independent for any finite combination of time instants.

Property 2.2.3 If, for any t > s and d> 0, the distribution of X;+q — Xs+q) iS the same as the

distribution of &; — Xs), then the process is said to hastationary independent increments.

Property 2.2.4 A stochastic process in which if one wants to make a prediction about theo§tate
the system, at a future time, t;’, the only information necessary is the state of the system at the

present time {{', is called aMarkov process.

Any knowledge about the past (of a Markov process) is redundaiate leccurately this is
called a “first order” Markov process. This can be generalisedrith“order” by allowing the
process to “remember” the— 1 past states. However for the rest of this thesis emphasis is only

on “first order” Markov processes unless stated otherwise.

2.2.1 Examples
Gaussian Processes
One of the most well known classes of stochastic processes is the Gapssiess. Here the

index set is (often) not considered as the time. A thorough treatment afstaayprocesses can be
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Chapter 2 PROBLEM STATEMENT AND EXISTING METHODOLOGIES

found in Rasmussen and Williams (2006). Here the formal definition as gieasmussen and

Williams (2006, Ch.2) is adopted.

Definition 2.2.2 “A Gaussian process is a collection of random variables, any finite nurabe

which have a joint Gaussian distribution.”

The Gaussian process can be fully characterised by its first two momeatsa fRultivariate

process that is:
e means iyt = (X)), VteT.
e variances o7 = ((X; — pt) (X — 1) '), Vt € T.

e (two-point) covariancescou(s,t) = ((Xs— ps) (Xt — pt) "), Vt,s€ T with t #s.

Wiener Process

A well studied Gaussian process is ivener process It is a continuous-time stochastic process
which was proposed to describe the arbitrary movement of a particle poligre surface of water,
due to the continuous collisions with many water molecules, and is also kndsvowagsian motion

or acontinuous random walk

Definition 2.2.3 A Wiener process is a continuous-time Gaussian process that satisfidaitkav

property, with independent increments for which:
e Wo = 0, with probability 1

e (W) =0

Wi —Ws ~ A[(0,t — )

(We-wg ) = |-min(t,s)

(dw;-dwg ) = dt-1-8(t—s) ,V(0<s<t)eT.

Figure 2.1(a) shows four sample paths, or trajectories, from the sthondarmriate Wiener
process. Notice that although a Wiener sample path is a continuous funttilore @lmost surely,

it is not differentiable with probability one; this is called@ugh process

INamed after the American mathematician Norbert Wiener 1894 - 1964.
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i s 4 s s 7 8 s b ST R
X
(a) 1D Wiener process (b) 2D Wiener process

Figure 2.1: (a) Four different standard Wiener paths are simulated,aecpresented with dif-
ferent colour. (b) An illustration of a two dimensional Wiener procesgeNat all sample paths
start atwg = 0.

2.3 Partially observed diffusions

Diffusion processes are a special class of continuous time Markoegses with continuous sam-
ple paths, (Kloeden and Platen, 1999). The time evolution of a gefethimensional, diffusion
process Xt }te1 can be described by a stochastic differential equation (here to be wtteapn the

Ito sense):

dx; = f(t,x;;0) dt+ 3(t,x;0)Y2 dw, dw; ~ A((0,dtl) (2.1)

wherex; € 0P is theD dimensional latent state vectéft, x;; ) € 0P is the (typically) non-linear
drift function, that models the deterministic part of the syst8t, x;; 8) € 0P*P is the diffusion
or system noise covariance matrix aha; is the differential of & dimensional Wiener process,
{wt }teT, which often models the effect of faster dynamical modes not explicitlyessted in the
drift function but present in the real systeih= |[to,t] is a fixed time window of inference, with
to andts denoting the initial and final times respectively. The veéar (™ is a set of parameters

within the drift and diffusion functions.

Necessary conditions

To be a diffusion process the following limits must exist for alf @ < t, with & > 0 (Kloeden and
Platen, 1999).

im (-9 /ZX>6 p(s,x;t,z)dz] —0 2.2)
lim _(t —s)l/zxga(z—x) p(s,x;t,z)dz] = f(s,x) (2.3)
im (-9 /ZX<6(Zx)(zx)Tp(s,x;t,z)dz] — %(s,%) (2.4)

wherex, z € OP, p(s,x;t,z) is thetransition pdfand the dependence of the drift and diffusion

functions on the parameteéshas been omitted for notational brevity. The first limit Eqg. (2.2)
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prevents the process from having large displacements over a small timaint@éonditions (2.3)
and (2.4) are the instantaneous rate of change in the mean (drift funetidicpvariance (diffusion

coefficient), given that the process was at skaétimes (i.e. X(S) = Xs = X).

Discrete observations

Often the latent process is only partially observed, at a small number efeafdliscrete times
{tk}Ezl, which satisfy :tg <ty <ty < --- <tk < tf. In addition the observations are subject to

error. Hence

Yk = h(X, ) + ek , ek~ N(0,R) (2.5)

whereyy € 09 denotes thé'th observation taken at timtg, h(-) : 0° — 0% is the general obser-
vation operator and the observation noige= 09, is assumed (for simplicity) to be independent
and identically distributed (i.i.d.) Gaussian white, with covariance m&rix(19%9. Note that if

the nature of the observations varies at different times kiénis used instead.

2.4 Problem definition

This thesis addresses the problem of inferring the states of a systgrtogether with the (pos-
sibly) unknown model parametem)( from systems that are modelled by diffusion processes and
observed at a finite set of discrete time points.

This is an interesting and challenging task because diffusion models hameubed exten-
sively in the last few decades to model phenomena that exhibit randomnéss/olve continu-
ously in time. Meanwhile, observations from most physical systems airdisaete times (e.g.
hourly, daily, monthly, etc.).

More precisely, one is dealing with a continuous time system, which is obsat\didcrete
times; and that is what makes the problem difficult. In all but a few exarhmsi;imation of dif-
fusion models is not straightforward because the SDE that describesrthertd evolution of the
system cannot be solved analytically. Moreover, most real world pseseare complex, which
implies a non-linear driff(x;) and diffusion function is necessary, if good agreement with the
measurable values is to be achieved. This complicates the statistical anatysim@ne because
the (discrete-time) transition densities Eq. (2.2) are no longer tractabley wigans that estima-
tion of the model parameters within a traditional Maximume-Likelihood (ML) framewie not

possible. Therefore, approximate techniques are sought.

1(a) Geometric Brownian motior(b) Ornstein-Uhlenbeck process afw) Cox-Ingressol-Ross process, have log-

normal, normal and non-centred chi- squared transition densitiesatbsgy.
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In a Bayesian framework, the goal is: given a system whose evolutioesizited by a dif-
fusion (such as Equation 2.1) and a set of discrete time observationati@yQ.5) to estimate
the (smoothing) posterior distributiops(X;|y1 ), conditioned on the available observations. The
system states might be summarised as the mean <xt>ps, together with a measure of its uncer-
tainty S = ((x; —my) (X — mt)T>pS. In addition, when the model parametéare unknown, an

estimate of their value is also desirable.

2.5 Existing methodologies

After describing the main inference problem addressed in this thesis, tfentaection reviews
and discusses the main methodologies that have been employed to solvergndaféor non-
linear stochastic dynamical systems, which are observed at a finite siscoftd time instants,

is a challenging task because théssing pathdetween observed values must also be estimated,
together with any unknown parameters.

A variety of different approaches has been developed to undertédeeiice in SDEs. This
thesis focuses largely on Bayesian approaches which from a methoaolpgict of view can be
grouped into the following three main categoriés) sequential(b) Markov chain Monte Carlo
(MCMC) and(c) variational approaches. Note that this classification is not unique ands @the

possible.

2.5.1 Sequential approaches

The first category attempts to solve tkeshner-Stratonovich-PardoyKSP equations (Kushner,
1967a). TheKSP method (described briefly in Eyink et al. (2004)), can be applied to gige th
optimal (in terms of variance minimising estimator) Bayesian posterior solution to fineite
problem, providing the exact conditional statistics (often expressed in t&rthe mean and co-
variance) given a set of observations and serves as a benchmatkéoapproximation methods.
Initially, the optimal filtering problem was solved by Kushner and Stratono(&thatonovich,
1960; Kushner, 1962, 1967a) and later the optimal smoothing setting was by an adjoint
(backward) algorithm due to Pardoux (1982). Unfortunately, the KStodds computationally
intractable when applied to high dimensional non-linear systems (KusHt&tp1 Miller et al.,
1994), hence a number of approximations have been developed toitletlig/issue.

For instance, when the problem is linear the filtering part of the KSP eqsdtienthe forward
Kolmogorov equations) boil down to the Kalman and Bucy (1961) filter, wigc¢he continuous
time version of the well known Kalman filter (Kalman, 1960). When dealing wistesys that

exhibit non-linear behaviour a variety of approximations, based on thmakKalman filter (KF),
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have been proposed to overcome these difficulties. The first appi®acHinearise the model
(usually up to first order) around the current state estimate, which thrautaylor expansion,
requires the derivation of the Jacobian of the model evolution equatiomgevér, this Jacobian
might not always be easy to compute. Moreover the model should be smumtglein the time-

scales of interest, otherwise linearisation errors will grow causing the ddtigmates to diverge.
This method is known as the extended Kalman filter (EKF) (Maybeck, 197®Was succeeded
by a family of methods based on statistical linearisation exploiting the obserth#bit is easier

to approximate a probability distribution than a non-linear operator.

A widely used method that has produced a large body of literature is thenblesEalman fil-
ter (EnKF) (Evensen, 2003), or when dealing with the smoothing problerariteemble Kalman
smoother (EnKS) (Evensen and van Leeuwen, 1999). Recently aisttiiegy has proposed that
rather than sampling this ensemble of particles randomly from the initial distribti®prefer-
able to select aesign(i.e. deterministically chose them), so as to capture specific information
(usually the first two moments), about the distribution of interest. This methdtkis called the
unscented transforrand the filtering method is thus referred to as the unscented Kalman filter
(UnKF), first introduced by Julier et al. (2000). Another populaprapch is the particle filter
by Kitagawa (1987), in which the solution of the posterior density (or KSR&gns) is approxi-
mated by a discrete set of particles with random support (Kivman, 26&8nRead et al., 2008).
This method can be seen as a generalisation of the ensemble Kalman filteisb@dodoes not
make the Gaussian assumption when the ensemble is updated in the light oféeheatiss. In
other words, if the dynamics of the system are linear then both filters shivelthg same answer,

given a sufficiently large number of particles (ensemble) members.

2.5.2 MCMC approaches

The second category applies Monte Carlo methods to sample from the pogtedess, focusing

on areas (in the state space) of high probability, based on Markov ctié@ad, 1993). When

the dynamics of the system is deterministic, then the sampling problem is on tledfpaitial
conditions. In contrast, when the dynamics is stochastic the sampling probtemttie space of
(infinite dimensional) sample paths. Therefore MCMC methods for diffusaoeslso known as
“path-samplingtechniques. Although early sampling techniques such as the Geman anchGema
(1984) Gibbs sampler can be applied to systems, convergence is oftéovtotnsorder to achieve
better mixing of the chain and faster convergence other more complex pinidtscated techniques
were developed. Stuart et al. (2004), introducedlthegevin MCMGCmethod, which essentially
generalises the Langevin equation to sampling in infinite dimensions. A similaoagpis the

Hybrid Monte CarloHMC) method (see Duane et al. (1987)) which was later generalis@afor
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sampling problems by Alexander et al. (2005). Both algorithms (LangeviMk@nd HMC)
need information on the gradient of the target log-posterior distributionupaicte the entire
trajectory (sample path) at each iteration. They combine ideas of moleculamiys) employing
the Hamiltonian of the system (including a kinetic energy term), to produce pefigarations
which are then accepted or rejected in a probabilistic way using the Metrapiédison.

Following the work of Pedersen (1995), simulated maximum likelihood estimati®MLE),
Durham and Gallant (2002) examine a variety of numerical techniquesite tbe performance
of this method by introducing the notion of tBeownian bridge between two consecutive obser-
vations, instead of the Euler discretisation scheme that was used in Ref96). This lead to
various “blocking strategies”, for sampling the sub-paths, such as #@rposed by Golightly
and Wilkinson (2006), as an extension to the previous “modified bridgeti{@m and Gallant,
2002). The work of Elerian et al. (2001); Eraker (2001) and Risbend Stramer (2001) is based
on a similar direction, that is augmenting the state with additional data between tiserretta
values, in order to form a complete data likelihood and then use a Gibbs samplgrer sam-
pling techniques (e.g. MCMC). A rather different sampling approachesquted by Beskos et al.
(2006b), where angxact samplingalgorithm (in the sense that there are no discretisation errors),
is developed that does not depend on data imputation between the obsealabs, but rather
on a technique callektrospective samplingsee Papaspiliopoulos and Roberts (2008) for further
details). Although this method is very appealing and computationally efficienpaced to other
sampling methods that depend on fine temporal discretisation to achievéestfficcuracy, the
applicability of the method depends heavily on &éxact algorithmas introduced by Beskos et al.
(2006a).

2.5.3 Variational approaches

The final category (from a Bayesian point of view) of methodologies@pmates the posterior
process using variational techniques (Jaakkola, 2001). A populaodwtyy, which is opera-
tional at theEuropean Centre for Medium-Range Weather ForecsSGMWF), is the four di-
mensional variational data assimilation method, also known as “4D-Var” (DametTalagrand,
1986). This method seeks the most probable trajectory (or the mode), gifphexanate poste-
rior smoothing distribution, within a predefined time window. This is found by minirgisirtost
function which depends on the measured values and the model dynamiesvéipthis method
does not provide uncertainty estimates around the most probable solutiefi4D-Var’ method,
as adopted by the ECMWF and others, makes the strong assumption that #laswiither per-
fectly known, or that any uncertainties are negligible and hence can beeidinA generalisation

of this strongperfect modelassumption, is to accept that the model is not perfect and should be
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treated as an approximate solution to the real equations governing the syRtésrieads to a
weak formulatiorof 4D-Var as described in Derber (1989); Zupanski (1996). Tkeryhbehind
theweak formulatiorwas introduced in early 70’s by Sasaki (1970) - several versieadescribed
in Tremolet (2006) and will be discussed later.

Another variational technique that seeks the conditional mean and varidribe posterior
smoothing distribution is described in Eyink et al. (2004). In this work Eyarigues that the
ultimate goal of a data assimilation method is to recover not a specific historyehatajed the
observations, but rather the correct posterior distribution, conditioped the observations. To
achieve that anean fieldapproximation is applied to the KSP equations, which as discussed earlier
provides the optimal filtering and smoothing solution to the inference problem, dr8ayesian
perspective. More recently the work of Archambeau et al. (200ggested a rather different
approach, where the true posterior process is approximated by a tigingvéinear dynamical
system (such as a non-stationary Gaussian process), rather thamragsa fully factorising form
to the joint posterior. This linear approximation assumption implies a fine time distretisif
good accuracy is to be achieved, and tries to optimise globally the approxiosteipr process
in terms of minimising the Kullback-Leibler divergence (Kullback and Leibl@51), between

the two probability measures. This method is further reviewed in Chapter 4.

2.5.4 Non-Bayesian approaches

Although, this thesis addresses the inference problem from a Bayegsisjpeptive, to provide
a more complete overview of the proposed methodologies, this section raviflg the main
non-Bayesian estimation techniques (for reviews see Nielsen et al.)(@2068®orensen (2004)),
that have been developed for inference in partially observed diffysiocesses. In general, the
methods cited here focus largely in estimating the model parameters (i.e. umpaoameters in
the drift and diffusion functions) and can be grouped ini®:analytical and numerical approx-
imations of the true likelihood(ji) estimating functions anglii) indirect inference and efficient
method of moments (EMM).

The most appealing methods are those that approximate the true likelihoodpphéxima-
tion can, theoretically, be made arbitrarily accurate. There are three mas: tfijhe first one
provides numerical solutions to the Fokker-Planck equation (which istelpdifferential equa-
tion)* and was initially recognised by Lo (1988). Later, various implementations iméoduced
by Hurn and Lindsay (1997) using spectral approximations and Jemrsk®oulsen (2002) us-
ing the method of finite differences. The second method obtains estimatestnid¢Hikelihood

via simulations (Pedersen, 1995; Brandt and Santa-Clara, 2002;d#atn 2003). A common

1Also known as the Kolmogoraforward equation.
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characteristic of these approaches is the use of a numerical scherheasgstie Euler) to move
from one state of the systery, at timety, to the next statey. 1, at timety,1, in n time steps.
Even with efficient modern computers both numerical approaches arecguiteutationally de-
manding. The third approach provides analytical, yet very accurateretiésapproximations to
the likelihood function (Florens-Zmirou, 1989; Shoji and Ozaki, 1997;3dhalia, 1999, 2002).
The core idea behind these methods is to replace the true transition densityetitlerathat has
closed-form solutions and includes the (hyper-) parameélens the SDE (Equation 2.1). The
simplest case is to use as a proxy for the true transition pdf the Gaussiahutiistr such as
N (xk + f(t,xx; @) Ot,3dt). However, the resulting mathematical expressions are quite compli-
cated even for low order approximations. Moreover, the bias that is intemtidue to the discrete
time approximation makes the estimates of the parameters inconsistent for ahgdmgling
interval.

Estimation via estimating functions is generally faster (Jacobsen, 2001 ghBospeaking,
an estimation function is defined Bsy, 0) : 0P — [0, where its arguments are the observatipns
and the model parametefis The property of this function is that it goes to zero as the parameters
0 tend to their optimal values (i.d= — 0 as@ — 6op). An example is thescore functioryield-
ing the maximum likelihood estimator. However, for the SDEs the score functioot iavailable
therefore alternative solutions are sought. The so cali®gle estimating functiorere available
in explicit form but provide only estimators for parameters from the margiisalibution (Kessler
and Sorensen, 1999; Sorensen, 2000). Still, they may be usefuldanmary analysis, for ex-
ample in combination witlmartingale estimating functionsThe latter are analytically available
for a few models but in general they must be simulated (Bibby and Soreh888). This basi-
cally amounts to simulating conditional expectations, which is faster than calgutatiditional
densities as required by the numerical likelihood approximations mentioned.abo

Indirect inference (Gourieroux et al., 1993) and EMM (Gallant andchan, 1996), which
is closely related to the General Methods of Moments (Hansen, 1982gRiamsl Scheinkman,
1995; Duffie and Singleton, 1993), introduce discrete time auxiliary (lysweong) models to ap-
proximate the true models. Then, the model parameters of the auxiliary magl&l)(are linked to
the true parameteswith the so-called binding function (i.€.= v(8)). Subsequently, maximum
likelihood estimates are obtained for the auxiliary (proxy) mdggl and the estimates for the
true parameters are obtained using the inverse of the binding functio@ &e: (£, )). Never-
theless, the quality of the estimators depends heavily on the auxiliary modéi,whiessence, is
chosen arbitrarily.

Most of the aforementioned methods are, in principle, applicable to multivatiffdsions as

well. With a few exceptions this has yet to be demonstrated in practice. Merebe compu-
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tational cost will be even more substantial than for univariate processesre comprehensive

review for these methods can be found in Jeisman (2005).

2.6 Discussion

This chapter initially introduced the main building blocks that are used extwpdater in the
thesis. An informal definition of stochastic processes, along with somellysefperties and
some simple characteristic examples (i.e. the Gaussian and Wiener pracessso provided.
A thorough mathematical description of stochastic processes that wouiider@goper stochastic
calculus is avoided. Instead a more practical approach is followed #&chne references are
cited.

The importance of partially observed diffusions was highlighted. Thessacg limit con-
ditions that distinguish them from the other families of the stochastic processesgiven and
assumed to be satisfied for all the examples in the thesis. Furthermore, the ofotiscrete
observations was further clarified.

Defining the problem addressed in the thesis is of great importance. Ticaltifof obtaining
estimates of the system’s states together with unknown model parameters egaedtand the
major methodologies to tackle this problem were reviewed. Although a complatériferences
is not claimed the effort was to gather the most well known and widely aatepe¢hods. In spite
of the fact that the inference problem here is placed within a Bayesiaeivark, alternative (non-

Bayesian) approaches that deal with the estimation of parameters in SBEalaereviewed.
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Chapter 3 SYSTEMS STUDIED

“Essentially, all models are wrong, but some are uséful.
— George E. P. Box, English statistician.

3.1 Foreword

When developing new methodologies to solve the inference problem, atbéelsa Chapter 2, it
is important to validate them on dynamical systems (or models) with known piegpand broad
acceptance from the scientific community as benchmark models, beforarapgitgm to real
world problems. However, to avoid confusion, is also necessary toidesar define what the
terms “dynamical system”, “dynamical model” mean.

Virtually every physical process that humans observe can be deddiiba mathematical
model That is a set of mathematical expressions (i.e. functions) that form redaijms between
some properties of the process. Usually, these properties are deyaefihtie set of variables
(also known as thstate vectorand assumed to represent fully, or adequately enough, the state of
the process at any given time. This mathematical formulation that descriltestperal evolution
of the process is known asdynamical systemThroughout this work the terms “system” and
“model” are used interchangeably.

The purpose of this chapter is to summarize and briefly describe the dynaystams that
will be used later to test the algorithms developed. These vary in dimensionalityaam-linearity,
ranging from univariate linear to forty dimensional non-linear. Charestie examples are given

and the model equations are defined properly for all systems considered

3.1.1 Chapter outline

Section 3.2, introduces the one dimensional Ornstein-Uhlenbeck p(@d$sThe linearity in the
assumed dynamics of this system allows many analytic calculations and irdeéodve performed
exactly. Next the univariate and strongly non-linear Double Well (DWsteay is reviewed in
Section 3.3. To identify how the methods developed later scale in higher dimsr&gation 3.4,
presents a stochastic version of the three dimensional chaotic Loresyséin (L3D). The last
system considered is the forty dimensional stochastic Lorenz '96 (L46Ijwed by a discussion

section that concludes the chapter.

3.2 The Ornstein-Uhlenbeck process

The one dimensional linear Ornstein-Uhlenbeck process (Uhlenbecarstein, 1930), origi-
nates from the physics literature and was proposed as a mathematical ordtiel ¥elocity of a

particle undergoing Brownian motion (see Figure 2.1(b)). Here it is @wholed as a continuous
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Markov process with dynamics that can be represented by the followikg SD
dx = —0x dt+o dw , (3.1

whereB > 0 is the drift parameteqg € O is the diffusion coefficient (noise standard deviation) and
w; € 0 is the univariate Wiener process.

In the experiments that follow (see Chapter 6), this system is consideeetbference exam-
ple. Actually, the solution for the kernel covariance function is knowrcgyawhich is induced
by the corresponding Gaussian (Markov) prior process. KaratmhShreve (1991), have shown

that Eqg. (3.1) has the unique strong solution:

X = exp{—6t} <xo+o/ot exp{es}dws> , X—0 = X0 - (3.2)

The OU process; is a normally distributed random variable with mean and variance given

by:
(%) = <exp{—9t} <XO+0'/Ot exp{es}dws>>
— (exp{—6t}xo) + <exp{—6t}o /0 t exp{es}dws>
— exp{—6t} (xo) +exp{—6t}o /0 " exp{6s} (dwe)
— exp(—6t} (x0) . (3.3)

and

varx] = {(% — (x))%)

_ <<exp{—9t} <x0+0/t exp{es}dws) —exp{—6t} <Xo>>z>

= exp{—26t} /t exp{es}dws> 2>
— exp{—26t) / exp{26s) <d\/\/2>>
= exp{—26t} | varXo exp{ZGs}ds)

= exp{—26t} | varXo [exp{zes}]t>
= exp{—26t} ( varxg [exp{zes} 1])

<
((0o-
(
— exp{—26t) (var o / exp{26s} (265) ds>
(
(vt
(vt

— exp{—26t} ( varixo ) (3.4)
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where(dws) =0 and<dvv§> = dsfrom the properties of the Wiener process (see Section 2.2). In

a similar manner the covariancev(x, s) is computed as follows:
COM(Xt, Xs) = (% — (X)) (Xs — (Xs)))

= (%Xs) — (%) (Xs)

_ <exp{—6t} (xo+o / t exp{BK}dWK> exp{—0s} <x0+o /O sexp{e)\}dw)\>>
—exp{—8(t+9)} (xo)°

— exp{—8(t +s}<<xo+o exp{eK}dWK> <xo+0/osexp{6)\}dm>>
—exp{—0(t + 9} (x0)2

— exp{—B(t+s }( x2) +a? / / exp{B(K +A)} (dws dw) — <XO>2)

— exp{—6(t +9)} @ﬂm+[amm§ q>

= varxo| exp{ —8(t +s)}+ (exp{—e(t—s)}—exp{—e(tJrs)}), (3.5)

with 0 < s<t. Note that ifxg ~ A(O, %) then {X }tcT, becomes (strictly) stationary Gaussian

process with covariance function (equilibrium kernel):

2
CoV(X, Xs) = %exp{—e(t—s)}. (3.6)

Otherwise, ifxg is known exactly (i.e. vaxg| = 0), then the non-equilibrium kernel yields:
2

o
CoV(X, Xs) = b (exp{ B(t—s)} —exp{—6(t +S)}> . (3.7)
From the above expressions it is clear that using the right kernel in ss@@aprocess regres-
sion smoother, the exact (predictive) posterior process can be cai{@asmussen and Williams,

2006).

x(t)

0 2 4 6 8 1t‘0 1‘2 1‘4 1‘6 1‘8 20
Figure 3.1: Example of an OU trajectory defined®eg- [0, 20|, with xg = 0.

An example of an OU trajectory is shown in Figure 3.1, where the simulation isedkén

T =[0,20], with noise variance? = 0.2 and drift paramete = 1. Applications of the OU process
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can be found in many disciplines such as physics (e.g. modelling the veloatyaiticle) and

finance (e.g. modelling interest rates, currency exchange rates, cotypipackes, etc.).

3.3 The double well system

The double well (DW), is a non-linear system with dynamics described bfptlosving stochas-

tically forced scalar differential equation:
dx = 4% (0 —x2) dt+ o dw , (3.8)

where® > 0, is the drift parameter amu, w; are defined as in Eq. (3.1). The force (i.e. the drift
function) of this system arises from a double-well potential fundtigr ) = —2x? + x¢, with three
equilibrium values ax; = 0 andx, = + 1. Notice that the drift function in Eq. (3.8), is simply the
derivative:—dté—gf‘) = 4% (1—x¢), for6 = 1.

As shown in Figure 3.2(a) the position of a particle at 0 is unstable, while Ait is stable
in the absence of noise. However, within the current setting weak rarolm®s occur which
make the state of the systegiluctuate about one of the wells for rather long periods of time and
occasionally drive the particle from one basin to the other (see Fig. 3.A(his effect is known

as “transition” between the two stable states.

5 10 15 20 25 30 35 40 45 50
t

> = 0 1 2 0 5 10 15 20 25 30 35 40 45 50
X t
(a) Double well potential (b) Double well simulations

Figure 3.2: (a) The double well potential. The stable points in this example aee &1, while at
positionx = 0 exists the unstable point. (b) Two examples of DW sample paths including multiple
transitions between the two wells, definediors- [0,50]. The parameter setting for both examples
is@=1,0% = 0.8 andxg ~ 0.50((0, 25?).

Systems of this type have been proposed, in the early '80s, as simple mbtietsearth’s
climate exhibiting bimodality in which the two deterministic stable states represenitioosd
such as “normal-age” and “ice-age” (Sutera, 1980; Nicolis and Nict#i8]1). Although a simple
system, the double well has served as a standard benchmark for datdaéism methods in a
number of references such as Miller et al. (1994, 1999); Eyink arstir&®o (2000); Eyink et al.
(2004); Archambeau et al. (2007, 2008).

38



Chapter 3 SYSTEMS STUDIED

3.4 The Lorenz '63 (3D model)

The next system is the stochastic three dimensional chaotic Lorenz '&3,(d8ven by the fol-

lowing SDE:
Xt oyt —X) o 0 0 W
diy | =] px—%—xz |dt+]| 0 o O | d| W |, (3.9)
z XYt — Bz 0 0 o, W

or in a more compact form by:
dx; = f(x) dt+ Y2 dw , (3.10)

wheref(x;) € 0% is the drift function, with state vectog = [ y; z] " € 0° representing all three
dimensionsf = [o p B]" € O3, is the drift parameter vectal; € (%3 is a (diagonal) covariance
matrix andw; € 03 is an uncorrelated multivariate Wiener process.

The deterministic version of this model (i.e. without the noisy part of Eq. 3@} first
introduced by Lorenz (1963) as a low dimensional analogue for la@e #termal convection in
the atmosphere. It is an approximate model of the convective motion of a fhticstbooled from
above and heated from below. The state vector variables can be plyyisitspreted as follows:

X represents the intensity of convective motignthe temperature difference between ascending

and descending currents andhe distortion of the vertical temperature profile from linearity.

Figure 3.3: lllustration of the L3D chaotic behaviour. Both examples argepted as time series
on each separate dimension. The time windoW is [0, 20] for both solutions and the drift vector
0 =[1028 26667 .

This multi-dimensional non-linear system is from the first dynamical systermsvidgashown
to produce chaotic behaviour when its drift parameterp andp lie within a specific range of

values. The choice of the drift values, in this work, are those to prodiaetic behaviourd =
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10.0, p = 28.0 andB = 8/3)! and they are the most common in u§haotic behavioumeans the
solution of the system over a long time window evolves unpredictably (althoeggnministically),
when small changes occur in the initial conditions (i.e. the initial state vegjphowever it is

a well known fact that unstable periodic orbits may occur even in chaotiardics. Figure 3.3
demonstrates this chaotic effect on two examples, of the deterministic L3D.eBathples are
presented as time series in each separate dimension and their initial condimnsdentical
except from the first dimension, of the state vector. More precisely, the initial state vector for
the blue continuous line ig)'"® = [~11.8114—9.9392 265024 ", whereas for the red dashed line
isx[°d = [-11.3500 — 9.9392 265024 . It is obvious that the two examples start to deviate after
the second time unit & 2), and their paths remain different until the end of their time window.

The incorporation of additive noise to the system equations (see Eq, B14k8s the behaviour
of the system more unpredictable and adds one more degree of difficudtly applying data
assimilation methods. This is illustrated in Figure 3.4, where the same sokgtisrpresent in
the smooth deterministic version (left column) and the corresponding noesyrigmt column).
Both examples share the same initial state vexjpthey are defined ol = [0,50] and the noisy
simulation has diffusion covariance matix= diag{7,7,7}. In addition, for all the simulations
that follow the deterministic equations were integrated forward in tim&@dgp = 5000 units, in
order to get the initial state vectap on the attractor and then the stochastic sample path was
generated.

The Lorenz '63 (or L3D) system, has been studied extensively notasy standard bench-
mark but also on its own terms and has produced a large number of ieferésee for example
Evensen (1997); Evensen and van Leeuwen (1999), Miller et a®4(1P999) and Hansen and
Penland (2006, 2007)).

3.5 The Lorenz '96 (40D model)

Lorenz (1996), introduced a toy model to represent some atmosphentityuwhich consisted
of N > 0 variables¢, whose evolution is governed by differential equations, as follows:

dx : . : :

R T ]

HereN is set to forty (i.ei € {1,2,...,40}), with cyclic indicessuch as¢ ™ = x™N = x and

0 = 8.0 is the forcing (drift) parameter. These 40 variables form a cyclic chaircan be seen as
meteorological variables of 40 sites which are spaced equally around déatitcle (see Figure
3.5).

Lin practice, for the experiments that follow, this parameter was $ett@.6667.
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Figure 3.4: L3D convection equations: Projections of the deterministic andagtic examples in
phase space. Both simulations have the same initial conditipas0.9961, 1.4949 14.1989 .

The equations contain quadratic, linear, and constant terms simulatingtiadyeaternal
damping and external forcing of some atmospheric varighlénerefore it can be seen as a mini-
malistic weather model (Lorenz and Emanuel, 1998).

However, in the current framework additive noise is added in evergteany forming the follow-

ing stochastic differential equation:

(€ =30 =3 +8

3 0yy1 2
— —X+6
dx, (% Xt4 )Xt X dt+21/2 dwy, 6>0e0. (3.11)

| (¢ =)0 = +6 |

The state vectok; consists of forty variable{i.e. X =[x X ... xt“O]T>, > € 04040 is the
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Figure 3.5: lllustration of the sites’ placement, at equal distances, onuarigrid forN = 40.

diagonal system noise covariance, the drift parametisr constant (same for all variables and

independent of time) and; € 04 is a multidimensional standard Wiener process.

5 15
10 I
i I
—
0
_5 [
-10 I
-15

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
t t

(a) L40D simulation example (b) x?° versus time

Figure 3.6: (a) an example of L40D simulation, displaying all forty dimensi@mstypical time-
series example of the 25'th dimension. All simulations are performet €0, 20].

Figure 3.6(a), presents an example of the stochastic L40D simulation on a timelirdae
twenty units T = [0,20]). To make the effect of the added noise more apparent, Figure 3.6(b)
shows only the 25'th dimension (i.e. the variakfé as a function of time). The strength of the
random fluctuations, in this particular example, has covariance mateixdiag{7,7,...,7}. A
more thorough study of the properties of this proposed system (determirgssion) and some

variations of it can be found in Lorenz (2005), as well as Orrell e24l0(); Orrell (2001, 2003).

3.6 Discussion

This chapter has presented the dynamical systems that are used later @sih&ottest the approx-
imation algorithms developed. Initially, a clarification took place concerning timestésystem”
and “model” to avoid confusion. The aim here was not to provide a fultigetson of the systems,
but rather to briefly highlight some of their properties and give some ctaistic examples.

The choice of the systems was mainly because of their increased dimensiamalityon-

42



Chapter 3 SYSTEMS STUDIED

System|| Dimensions| Linear | Chaotic Solver ot
ou 1 yes no Euler-Maruyamal 0.01
DwW 1 no no Euler-Maruyamal 0.01
L3D 3 no yes Euler-Maruyama 0.01
L40D 40 no yes Euler-Maruyama 0.01

Table 3.1: Summary of dynamical systems. ColurBolVer’ refers to the numerical integration
method that was used to produce the “true” trajectories that generatetdgbesations. In addi-
tion, the variabledt represents the time discretisation step of the numerical integration method.
Note that when the system is marked &haotic”, it implies that their model parameters (i.e.
drift vector ), lie within the regimes that produce this chaotic behaviour.

linearity, starting with the one dimensional linear OU process and finishing wétHatty di-
mensional non-linear Lorenz '96 (as seen in Table 3.1). Moreoverahe of these systems is
reflected by the number of references that can be found in the liter&teree a broad acceptance
as benchmark models is evident.

Since all the simulations took place on digital computers the “truth”, of eactersysvas
generated with numerical integration schemes that discretised the modé&begund solved
them forwards in time. The method of choice here is the simple first order-Elaaryama
scheme (Kloeden and Platen, 1999), keeping the time discretisatioldtssemall, so that good

accuracy is achieved.
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Chapter 4 THE VARIATIONAL GAUSSIAN PROCESS APPROXIMATION ALGORITHM

4.1 Foreword

When modelling real world dynamical systems, one must take into accounntganeral the
prior process is not Gaussian. Subsequently, if the prior procesai&aassian then the posterior
process is also non-Gaussian. If the process is assumed Markoe@ddgnition in Chapter 2),
then any marginal probability can be expressed as a product of th&ioaatprobabilities (i.e.
the transition kernels). However, even for the prior process (assusimgn-linear) that would
require the solution of the Fokker-Plack equation, which is a partial diffial equation. For the
majority of the real systems this is not possible, therefore approximation nedihedought.

A popular approximation method in machine learning is @&ussian process regression
(MacKay, 1998; Rasmussen and Williams, 2006; Osborne, 2007). Ehaeoidthe Gaussian pro-
cess regression modelling is to place a prior distribupdx) directly on the space of functions
and then perform inference in a Bayesian way. Alternatively, this casebe as a generalization
of the Gaussian distribution over a finite vector space. Hence the apptainaduces to the
approximation of a, possibly large, multivariate (but finite dimensional) ve&orthe important
feature that the process is infinite dimensional almost never plays arjcptaole.

This chapter reviews the recently proposed variational Gaussiangsrapproximation (here-
after VGPA) method, as was first introduced in Archambeau et al. (203 algorithm, follows
the variational method (Jaakkola, 2001) to define a linear (Gaussiacggs@pproximation
to the true posterior procegs This is done by minimising the Kullback-Leibler divergence be-
tween the two posterior measures, [§lp]. Unlike other variational approaches that enforce a
factorising posterior density, in an infinite dimensional setting such formulali@s not make
much sense. However, such a continuous time setting is not new (Eyink 20@4., Apte et al.,
2007). The VGPA algorithm, was initially proposed for solving the state estimé&imoothing)
problem and later was extended by the authors to include also estimatiorpef{hgarameters

(Archambeau et al., 2008).

4.1.1 Chapter outline

The remainder of this chapter is detailed as follows. Section 4.2 introducbaskesetting of the
the SDE with the additive noise and the model for the discrete time observatithresadgorithm.
The core of the VGPA algorithm is reviewed in Section 4.3, where the Bayésimework is
defined first, in terms of the posterior conditional density, and then thelledl eariational free
energyis defined and analysed. Section 4.4 outlines the proposed state estimatiath{sgjo
algorithm and subsequently two approaches of estimating the (hypemhptars are described in

Section 4.5. Both state and parameter estimation procedures are summarnssiithgcodes in
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Tables 4.1 and 4.2 respectively. The chapter concludes with a discussion

4.2 Basic setting

Equation (2.1) defines a system with multiplicative (i.e. state dependent) systsen The VGPA
framework considers diffusion processes with additive system noisghénbeau et al., 2007;
Beskos et al., 2006b). At first this might seem restrictive, howevetasasdsin Kloeden and Platen
(1999), re-parametrisation makes it possible to map a class of multiplicativemoigels into this

additive class. Hence, the following SDE is considered:
dx; = f(x) dt+ Y2 dwe,  dw ~ A((0,dtl) (4.1)

wherex; € 0P is the (latent) state vectdi(x;) € 0P is (usually) a non-linear drift functior®; ¢
O0P*D s the noise covariance matrix which for simplicity is assumed diagonabii-e.diag{c?}
fori=1,2,...,D) and {w; }tc7 is the standard dimensionalWiener process Moreover the
dependency of the drift functiditx; ) to the parameter vectérhas been suppressed for notational

convenience.

Observation model

The stochastic procegs: }tet is assumed to be observed at a finite set of discrete time instants
{t}_,, leading to a set of discrete time observatigyg € Dd}lle. In addition the observations

are corrupted by i.i.d. Gaussian white noise. Hence:
Yk = h(th) + ek, €k ~ 9\[(0, R) . (4.2)

Moreover, it is further assumed that the dimensionality of the observatictonvis equal to the
state’s vector (i.ed = D) and that the discrete time measurements are “direct observations” of the
state variables (i.eyx = Xy, + €,). This assumption simplifies the presentation of the algorithm
and is the most common case in practice. Adding arbitrary observationtoget@the equations
only affects the system in the observation energy term in Eq. (4.4) andeceeadily included if

required.

4.3 Approximate inference for diffusions

In this algorithm inference is performed on tbenditional posterior distributiomf the state vari-
ables given the observations, thus following the Bayesian paradigm sierjpp measure is given

as follows:

K
Ppest et lyax) = 5 [ PO Poror (D) icr) (43
k=1
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whereK denotes the number of noisy observatiahss the normalising marginal likelihood (i.e.
Z = p(y1k)), Ppostrepresents the posterior measaver paths{x: }tt, Pprior represents the prior
measure over paths defined by Eq. (4.1) ptyk|x:, ) is the likelihood for the observation at time

tk from Eq. (4.2).

4.3.1 Variational Free energy

The VGPA algorithm approximates the true posterior process by anothdreioags to a family
of tractable ones, in this case the Gaussian processes. This is achieaaurhising the so called

“variational free energy defined as follows:

p(ylzKaX’072)>
F(q(x]%),0,%) < n Ax) . (4.4)

wherex = {x; }tcT, P is thetrue posterior procesq is the approximateposterior process and
{-)qxx) denotes the expectation with respectita|X). As shown in Archambeau et al. (2008),
see also Appendix A, this expression provides an upper bound to théveelpg marginal likeli-

hood—Inp(y1|6,%):
—Inp(y1x[0,%) = 7 (q(x[%),0,%) —KL[q(x|Z) [ p(X|y1k, 0, )] (4.5)
< F(q(x|%¥),0,%), becauseKL>0. (4.6)
However, for this bound to be finite a critical assumption takes place. Bteraynoise covariance

(i.e. X), for both processeg andq must be the same. Otherwise the[KlLp] — o, (Archambeau

et al., 2008).

4.3.2 Optimal approximate posterior process

The approximation of the true posterior process by a Gaussian procebssirtt@atq will be

defined by dinear SDE. It follows that:
dx; = g (x¢) dt+3Y2 dw,, where g (x) = —Ax+by, (4.7)

with A; € OP*P andb, € OP define the time varying linear drift in the approximating process,
and{w; };c1 is aD-dimensional Wiener process with respect to the approximate megsBogh
of these variational parametefig andb; are time dependent functions that need to be optimised
as part of the estimation procedure. The time dependence of these pasamptzessary due to
the non-stationarity that is introduced in the process by the observations.

Continuing the derivation of Equation (4.4), as given in Appendix A, l¢adbe following

expression:

#(4(4),0,%) = KL ao] pol+ [ " Esadtt+ [ Eandt) Sa-wit. @)
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wherety andts define the initial and final times of the total time window (i’B.= [to,tt]), o(+)
is Dirac’s delta function, Klgo|/po] is @ shorthand notation for the KL at the initial state (i.e.

KL[q(xo0)||p(X0)]) and the energy functions are given by:

Energy from the SDE:
_1 N T(f(y)
Exadt) = 5 ((0x0) —aL(x)) 21 (Fx) —au(x))), - (4.9)
Energy from the observations:

aﬁwzigm—mfR1m—qu+gm@m+§mmm (4.10)

wherey = {y; ,top <t <t} € 09 is written as a continuous-time observable process; the discrete

time nature of the actual observations adds the delta function in Equation (4.8)

4.3.3 Gaussian process posterior moments

The Gaussian marginal at time 't’ is defined as follows:

ax) = N(x:m,S), teT, (4.11)

wherem; € 0P and$S, € OP*P, are respectively the marginal mean and covariance at time 't'.
The time evolution of this general time varying linear system in Eq. (4.7), iseted by two
ordinary differential equations (ODESs), one for the marginal meanand one for the marginal
covariance&; (see Eq. 4.11). These are given by the following equations (see Kl@adEPlaten,

1999, Ch. 4):

mt = —-Aim; + bt s (412)

S=-AS-SA +X, (4.13)

and thus become functionals Af andb,, wherer, € 0P andS, € O0P*P denote the time deriva-
tives 9™ and % respectively.

4.4 State estimation (smoothing algorithm)

The parameters that need to be estimated, in order to find the optimal Gaussiasspapproxi-
mation,q;, are the variational lineak; and biad; parameters (recall that these are also functions
of time), and the marginal at time 't’ meang and covariances$;.

However, Equations (4.12) and (4.13) are constraints to be satisfiedrensonsistency in

the algorithm (Archambeau et al., 2007, 2008). One way to enforce tuesdraints, within a
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predefined time windovito,t¢], is to formulate the followingLagrangian, and then look for its

stationary points:

tf .
L:T(q(xt\E),O,E)—/ AT (f+ A — by) + tr{ T (5 +AS +SAT —5)) | dt,

to

ODE for the means ODE for the covariances

(4.14)
where); € OP, ¥, ¢ OP*P are time dependent Lagrange multipliers, with being symmetric
matrix. Given a set of fixed parameters for the diffusion coefficmind the driftd, minimising
this quantity Eq. (4.14) and hence the free energy Eq. (4.4), will lead togtimal (in the KL-
sense) approximate posterior process (Minka, 2005).

Next, taking the functional derivatives df, with respect to the parameters of interest results

in the following equations:

Oa £ = Oa,Esgelt) — 284S — Am, (4.15)
Op, £ = O, Esadt) + At (4.16)
O £ = O, Esadlt) + At — Al A (4.17)
Os £ = Og Esadt) + Wy — 2WA, | (4.18)

where all these gradients along with the functional gradienEgft), with respect tA;, by, m;
and$;, are derived in Appendix A. A closer look at Equations (4.17) and 4 st®ws that setting
them equal to zero and rearranging results in a set of ordinary diffarequations that describe

the time evolution of the Lagrange multiplieks and ¥;:

At = —Om, Esaelt) + A At (4.19)

W, = — g Esgelt) + 2 A, . (4.20)

Nonetheless, these ODEs must include the effect of the observationis. Toise with twojump

conditions which are given by:

Aty ) = Aty ) — Omy Eobs(t) (4.22)

lI’(tlj_) = W(t, ) — UsEobs(t) , (4.22)

where the superscripts andt,” indicate times just before and after the observation time and the
functional derivatives ofly, Eops(tk) and Os Eops(tk) are derived in Appendix A. Due to their
discrete time nature the observations create an instantaneous “shock’siysthe, at measure-
ment times, whose amplitude is given by the functional derivatives of thergditton energy term
(Eobg), With respect to the marginal mean and variances. These equatiorscassary to ensure

that the posterior distribution Eg. (4.3) is continuous in time. One must note thasiciy another
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formulation for the estimation problem (i.e. without the use of Lagrange multiplcifferent
forms ofjump conditionsnight be available (Eyink et al., 2004).

A possible algorithm that solves the problem of estimating the optimal Gausgaoxapate
process, was introduced in Archambeau et al. (2008) and includexdvard in time (o — t¢)
solution of the ODEs for the means and the covariances (Equations 4.1218)dfollowed by
a backwardin time (o < tf) solution of the ODEs for the Lagrange multipliers (Equations 4.19
and 4.20), and at the end take agradient stepgEquations 4.15 and 4.16). This gradient based

algorithm, is briefly summarized in the pseudocode as shown in Table 4.1.

Optimal Gaussian process estimation algorithm

1. fix: to, t7, 0, X, R, n=1, Njmax= 1000 \* set initial values *\

2: initialise ({At}{;to bk, ,mo,so) \* initialise the algorithm *\
3: while (n < Nmay \* inner-loop (START) *\

4.  fwd-ODEs — {mt,S[}Ef:to \* conpute marginal nonents *\
5:  likelihood — {Eobs, Om,Eobs, Us Eobs}fle \* observation |ikelihood *\
6: prior — {Esde,DmtEsde,DStEsde}:f:to \* prior process energy *\

7:  bwd-ODEs — {)\t,‘I’t}EO:tf \* ensure consistency *\

8: compute {KLO} \* KL at time t=0 *\

9:  compute{Ua, L, Dth}:f:tO \* new gradients *\

10:  update {At*,b?}:f:to \* update variational parans *\
11: A¢ + Af, by by \* set the new At and bt *\
12.  check” for convergence \* conpute Lagrangi an *\

13:  n<n+l \* increase |oop counter *\
14: end while \* inner-1oop (END) *\

15: return (L,{At,bt,mt,St,)\t,\Ilt}:f:to) \* output (optimal) values *\

Table 4.1: Pseudocode of the optimal Gaussian process approximatiathatga practice. After
initialising all the necessary parameters the algorithm iterates, given a &xed drift and noise
parametersd, > andR), to minimise the Lagrangian cost function. The backward ODEs start
with A(tf) = 0 and®¥ (tf) = O, because at the final time there are no consistency constraints.

4.5 Hyper-parameter estimation

The classical approach to parameter estimation, from incomplete data, isghet&ion - Max-
imization (EM) algorithm, that was first introduced by Dempster et al. (19i@d)later extended
to partially observed diffusions by Dembo and Zeitouni (1986). Howeswgn though the EM

algorithm is well studied with a broad range of applications it can not be apgliecessfully in
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the current variational framework, because the approximate postéstabudtion g;, induced by

Eq. (4.7), is restricted to have the same diffusion coefficentTherefore, although an EM ap-
proach can be used to estimate the drift paraméteiise system nois& would be held constant
during the Maximization step. As a result, different approaches for estigidtnparameters have

to be adopted.

4.5.1 Discrete approximations to the posterior distributions

As shown in Equation (4.6), theariational free energyrovides an upper bound to the negative
log-marginal likelihood. Thus the negatifree energycan substitute the log marginal likelihood
and by choosing suitable prior distributiopg(@) and pp(X), # andX can be treated as random
variables and discrete approximations can be constructed to the posistidrution over the
(hyper-) parameters.

For example consider the drift paramet@rsnitially a set of pointDy = {6;}°, is selected
to approximate the posterior distribution and then the variational approximatitrocheuns to
convergence with these selected values. This yields to a correspontioigfiiee energy values
Dy = {F(q(x|X),6;,%)}®, that can be used to evaluate éxgF (q(x|X),6;, %)}, instead of the
true marginal likelihoodp(y1x |0, X):

Ng

B(6ly2x) O {exp{—ﬂq(xrzwi,z)}powi)} | (4.23)

i=1
whereng € N is the number of discrete points. Similar discrete approximations, to the posterior
distribution, can be computed for the system ndise In the above procedure the parameters
that are not approximated are kept fixed (to their true values). In the giondathat follow
(Chapter 7), Gamma priors are defined for the drift parameters and@@amma for the system
noise covariance, i.epo(0) = G(a,B) andpo(X) = G~ 1(a,b). The values of the parametexs

B, a andb, were chosen such as the mean value of the distribution coincides to theatoas v

of @ andX, but with large variance to reflect the initial “ignorance” about the trdaesof the

parameters.

4.5.2 Maximum likelihood type-Il point estimates

Another approach for estimating the (hyper-) parameters, as suggastgdhambeau et al.
(2008), is also based on the bound thatvhdational free energyrovides to the marginal like-
lihood Eg. (4.6), but instead of constructing approximate posterior diivimito the (hyper-)
parameters, as in the previous section, it employs a conjugate gradietithatgm provide point
estimates. More specifically, the algorithm works in an outer / inner loop optimrisiamework,

where in the inner loop the variational approximation framework is used to etatpe optimal
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approximate posterior proceg&: ), given a fixed set of the parameté&andX (Table 4.1). Then,
in the outer loop, a gradient step is taken to improve the current estimates(bfyfies-) param-
eters. This procedure, as shown in Table 4.2, alternates until the gsadfehe optimal process
Eq. (4.14), with respect to tiandX are zero [l9 L = 0 andUyx £ = 0), or the estimates cannot
improve any further (i.e. the optimal Gaussian process estimated in the inpatdes not change

significantly, e.gAL < 1.0e— 6 in Table 4.2).

ML type-Il parameter estimation algorithm

1: fix: { 6o, X0, N =1, Nmax= 1,000} \* initialise the algorithm*\

2. 00 X<+ > \* set the initial paranmeter values *\
3: L < inner-loop(8, X) \* optimal process fromTable 4.1%\

4: while (n < Nmay) \* outer-1oop (START) *\

5. compute{ gL, Ox L} \* gradients w.r.t. the parameters *\
6: if (OgL ' OpL==0o0rOxL O L==0) \* check if the gradients are zero *\
7 return {0, 3} \* return the ol d paraneter values *\
8: end

9: update{6*, X*} \* new paranmeter values *\
10:  L* < inner-loop(6*, X*) \* new cost function value *\
11.  if {AL* & AG* & AX*} <1.0e—6 \* check for termination *\
12: return { 0%, 3*} \* return the new paraneter val ues *\
13:  end
14: L+ L%, 0+ 0* X« X~ \* set the old values to the new *\
15 n<n+l \* increase the |oop counter by one *\
16: end while \* outer-loop (END) *\
17: return{0, X} \* if it has not convergence yet *\

Table 4.2: Pseudocode of the “ML type-II” point estimation algorithm in ficac Every time
the parameters are updated theer-loop@,X) function, see Table 4.1, recomputes the optimal
Gaussian process approximation for a given set of fixed parametesvalu

This method is referred here daximum-Likelihood type-lbr ML type-Il, for brevity. In
practice, to make the comparison with other Bayesian estimation methods (Chgaptere fair,
prior distributions over the (hyper-) parameters have been assignetpan in the previous sec-
tion (i.e. po(0) = G(a,B) andpo(X) = G1(a,b)). Therefore the algorithm provides approximate

MAP point estimates.
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4.5.3 Parameters to estimate

The parameters to estimate are the prior mean and variance over the initiahstageparameters

in the drift function@, the diagonal elements of the system noise covariance mataxd the
parameters related to the observable proéessNhen using the point estimate approach, the
gradients of the (cost) Lagrangian function, with respect to the parasngftérterest need to be

computed. These are given as follows.

Initial state:  The initial approximate posterior proceso), is equal toA’(mp, S), where the
initial true posterior process(Xo) is chosen to be an isotropic Gaussian (&0, Tol )). Taking

the gradients of Eq. (4.14), with respectntg andSy leads to the following expressions:

OmoL = Ao+ Tg (Mo — p10) (4.24)

1
OgL=Wo+ (ol -1 . (4.25)
Drift parameters: Similarly the gradient of Eq. (4.14), with respecté&as given:

t
gL — / ' DoEsudt)dt (4.26)
to

_ (" <(f(xt) - gL(xt))TE_lﬂgf(xt)>qt dt (4.27)

to

wherelgEsgdt) has been computed as shown in Appendix A.

System noise: The gradient of Eq. (4.14), with respect to the system noise covariiggiven

by:
t t
Dng/ngEsde(t)dtJr/flIltdt (4.28)
to to
te 1 tf
= [ 5= (00 - e )0 ~oux)T) St [ W, (4.29)
to 4 to

where the matrix is assumed symmetric.

Observation noise: Finally, the gradient of Eq. (4.14) with respect to the observation noise
covarianceRr is given by:

te

to il
L
=R [ (1= (- hoe) ™) R Sae-tat, @)

where the general observation operdtQy is left to provide a more general expression. In the case

that this operator is linear (or even identity), then the above expressidmecturther simplified.
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4.6 Discussion

This chapter reviewed a recently proposed variational Gaussiangsrapproximation algorithm,
for inference in partially observed diffusions. The main novelty of thiskwsithat the posterior
conditional distribution is over infinite dimensional sample paths, rather thaite dimensional
multivariate posterior as in standard Gaussian process inferencelgbhighem as presented also
covers multivariate systems and is derived in a continuous time framewonke\o, this ap-
proach is not new and the benefits of modelling the problem in continuous tisteafid then
discretising have been established by Apte et al. (2007). Moreovewiffierence with previous
work on the same direction is that the new VGPA algorithm provides a natasatamestimate the
model parameters.

So far, issues concerning discretisation schemes and initialisation of tagorzal parameters
have not been discussed. As will shown in following chapters when gpthie problem on a
digital computer the continuous time framework must be discretised. The cfusitkee prior
SDE Equation (4.1), is the simple Euler-Maruyama, although other schemedsar possible
and their effect on the performance of the algorithm is still an open questiba initialisation
of the variational parameteis; andb; can be done in many ways. All the analytic derivations
of the VGPA framework for the systems studied in this thesis are shown inr&pp®. Also,
expressions that can initialise these parameters optimally are given. licprdbe univariate
systems (OU and DW) could be initialised almost arbitrarily, showing goodstabss. On the
contrary, more care should be taken in the multivariate systems (L3D ard)LK@vertheless,
it is not yet clear whether this sensitivity of the algorithm in these systems isodineir higher

dimensionality or their chaotic behaviour.
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5.1 Foreword

This chapter derives and presents a new radial basis function fraknéwad extends the varia-
tional Bayesian algorithm for approximate inference in diffusion praegsss discussed in Chap-
ter 4. It is shown that the new radial basis function approximation basedithlyp not only
converges to the original VGPA algorithm, but also has beneficial cteistics when estimat-
ing (hyper-) parameters. The new approach is validated on three rear-liiynamical systems,
namely the univariate stochastic double well (DW), and the multivariate zo&$(L3D) and
Lorenz '96 (L40D). Results show that this new approach is able to ezgmod estimates of the

system and noise parameters in the multivariate case, even for chaotinsyste

5.1.1 Chapter outline

Initially, the main characteristics and benefits of using RBFs are highlighteid.ig followed by
the main contribution of this chapter, which is the (global) approximation, offirementioned
variational Bayesian inference algorithm (see Chapter 4 and also #gremeés of Archambeau
et al. (2007, 2008)), in terms of RBF expansion. For this purpose tWeREF approximation
framework, for the general multidimensional case, will be derived ampta@ed in detail. To
validate this new approach a series of experiments have been perfdRemdts for state estima-
tion are given in Section 5.4, and for (hyper-) parameter estimation in SeggorThe chapter

concludes with a thorough discussion concerning implementation and othes.iss

5.2 Radial basis function networks

Radial basis function networks are a class of artificial neural netydéhnlas were introduced as
an alternative to multi-layer perceptrons (MLP) (Bishop, 1995). Thayirtate from techniques
of performing interpolation on multivariate data, but their use can also bedfoufunction ap-
proximation (Broomhead and Lowe, 1988), classification problems, timessgmégliction and
so on. Two of the main features that make the use of RBF networks attractitee simplicity
of its architecture (usually only one layer of hidden units) and the factthigasctivation of the
hidden units is determined by the distance of the input vector from a proteggber (also known
as the “origin”). These two characteristics make the training methods usdtBiernetworks
substantially faster than those required when training MLP networks (Bjd895).

Typically a RBF network consists of three layers, as shown in Figure ha filst is referred
to as the input layer, the second is the hidden units (i.e. the basis functimh¢helast is the

output layer.
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Figure 5.1: Typical architecture of a RBF network. The vegt@ used as input to all RBFs, each
with different parameters. The output of the netwgrks a linear combination of the weighted
radial basis functions outpuis; ..

In the context of function approximation, which is of primary interest, the@pmation of a
multidimensional functionf (x) : 0P — O, is performed by a set d@-dimensional basis functions
which are defined as:

a(x) =a(lx—cil), (5.1)
where||.|| denotes the Euclidean distangg(x) : 0P — [, is the basis functiong; € 0P is the
i'th centroid and € N\*.

Given this setting, the approximation fx) is given by:

L
f(x)~ f(x) = _;wi X @(X) , (5.2)

wherew; € O is the i'th weight and. € A’* is the total number of basis functions. A common
choice of basis functions in the literature, is the Gaussian or squareeparkernel, as defined
in Equation (5.6), (Verleysen and Hlavackova, 1994; Benoudjit et @022 However, depend-
ing on the specific problem other choices of basis functions have alsodreposed, such as
sigmoidal (Tsai et al., 1996).

Theoretical guidance on how many basis functions one needs to uskiabrfamily of basis
functions is the most appropriate, in the context of approximate inferemekffusion processes,

have yet to be established, and some empirical results are presented later.

5.3 Global approximation of the variational parameters

The idea of approximating continuous (or discrete) functions by RBFs fsdiam new (Kurkova

and Hlavackova, 1994). Here, the complexity of the original VGPA algoarith controlled by
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using RBFs to approximate the time varying variational paramefgrar{db;, see Eq. (4.7)). In
the original variational framework, these functions are discretized withal $ime discretisation
step (e.got = 0.01), resulting in a set of discrete time variables that need to be optimised during
the process of minimising the free energy.
The size of that set (number of variables) scales proportional with tlgghlerfi the time win-
dow of inference, the dimensionality of the data and the time discretisation stetal one needs
to infer:

Neotal = (D+1) x D x |ty —to| x &t *, (5.3)

variables, wher® is the system dimensioty andts are the initial and final times and the time
stepdt must be small for numerical stability.

By replacing the discretized time varying functiohsandby, with RBF expansions the fol-
lowing expressions are obtained:

Lb

A = 'LZA)Ai x @(t) and by = %bi X Th(t) (5.4)

whereA; € 0P*P andb; € 0P are the “weights”g (t), T§(t) : [0,] — O are fixed basis functions
(regarded here as functions of time) dod L, € A'*, are the total number of RBFs considered.

Therefore the new (approximate) expression forflagrangian becomes:

~ ~ ts . ~ ~ tf . ~ ~
L=F(d(x),0,%) —/ A (g +Agmg —by) dt—/ tr{ W (S+AS+SA! —X)}dt. (5.5)
to to
The number of basis functions for each term, along with their class, n¢dd he the same.
However, in the absence of any general theory, or particular kngwladout the functions, an em-
pirical approach is followed that suggests the same number of Gaussiarilrections (Verleysen

and Hlavackova, 1994). Hentgp = La = Lp and@ (t) = 1g(t) where:

N 2
@) :exp{—O.S(”t ;iC'H) }, (5.6)

with ¢; andA; € [ are thei’'th centre and width respectively (which controls the smoothness of

the function) and|.|| is the Euclidean norm. Having precomputed the basis function péps’
i€{0,1,2,---,Lap} andV't € [to,t¢], as shown in Table 5.1, the optimisation problem reduces to

calculating the weights of the basis functions, with:
Lrer = (D+ 1) x D x (LAb—I— 1) , (5.7)

parameters. Typically the expected number of the RBF weights is much smaleththanitial
number of discrete time variables (i.&.rgr < Niotal), thus making the optimisation problem

smaller and more stable.
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T = [to, tf] to 18} ts
¢o — 1 1 S 1
¢1 Q(to) | ult) |-+ | @ulty)

¢LAb = (LI (tO) @, (tl) | QL (tf)

Table 5.1: Example o (t) matrix, defined ol = [to,t;]. HereT is discretised (i.eT = [to, to+

ot, to+ 20t, ..., to+ Nt =t¢]), whereN is the total number of discrete time units. Although the
basis functions are defined in continuous time and can be evaluated at amysiamg, in practice

the entries of®(t) matrix contain only the evaluations of the basis functions at the discrete time
instants of seT.

As in the original VGPA algorithm the parameters are determined using a Suatgugate
gradient (SCG) optimisation algorithm, as detailed in Nabney (2002), to minimiségtpangian
cost function, Eq. (5.5). To do that, the partial derivatives of the @pprate Lagrangian are
computed with respect to the weights of the approximating functions, as shofppendix B
(i.e. Ajandb;, Vi€ [0,1,2,...,Lap)):

oL oL

e and Wb, (5.8)

Once these weights have been determined, the pre-computed basis &iacgamsed and with
simple matrix multiplications the approximated time-varying linear dynamical systeroatia-

uous function of time is retrieved. Schematically, in matrix notation, this is:

Agt) Ao Ar o Al @o(t)
~ reshape Az (t) A270 A2-,1 T AZJ-Ab (pl(t)
At — . = . . . . X .

Apz(t) Apzg Apz1 - Apzi,, Py (1)

HereA, ; represents thgth component of thed;’'th weight. Effectively, thed; weights have been
reshaped in column vectors and packed all together in one matrix with dime®ien(Lap+1).
For theby a similar procedure is followed, only here things are simpler becaude theights

are already vectors, so there is no need to reshape them. Hence thst yield

by (t) bio bi1 - bii,, @(t)

- bo(t) boo 21 - boL,, @u(t)

bt = . = . . . . X . ’
bp (t) boo boi -+ Doy Py (t)

whereb; ; represents th¢th component of thé;'th weight.
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System (7] 3 | Nops| R
DW 1 08| 2 |0.04
L3D [10,28,2.6667 | 4 | 10 | 2
L40D 8 5 10 1

Table 5.2: Summary of the experimental setup.

In addition to the above re-parametrisation, of the initial algorithm, a modifiech&dehmidt
orthogonalisation is employed (Golub and van Loan, 1996), to improve nushetability and
the speed of convergence. This is done on the pre-comptedctors, as shown in Table 5.1.
In practice this orthogonalisation dramatically reduces the number of iteragguged for the
algorithm to reach convergence. Hefgerefers to the’th basis function (row-vector) that contains

the pre-computed values for alEt]to,tt]. Henceg; € 0N, whereN = |to —t¢|/dt.

5.4 Results of state estimation

The experimental results, on both state and parameter estimation, will batedksethis section
and the following one. To test the stability and the convergence propeftias mew RBF approx-
imation algorithm, the new approach is validated with three highly non-lineamdigaasystems.
These are the univariate double well system (DW), the three dimensionahz.¢L3D) system

and the forty dimensional Lorenz (L40D), (see Chapter 3).

Experimental setup

For the simulations here, a time window of ten uniis=€ 0, t = 10) for the DW system is
considered (Fig. 5.2(a)), twentyy (= 0, tf = 20) for the L3D (Fig. 5.2(b)), and fivety(= 0O,
tf = 5) for the L40D (Fig. 5.2(c)). The original theoretical framework (S#epter 4) addresses
continuous time sample paths, however when solving the problem on a digitalder, one has
at some point to discretise the equations. This is done with a relatively small tioretdiation
step (e.gdt = 0.01), which is identical for both the SDEs, see Eq. (4.1) and the ODEg4E®)
and Eq. (4.13). The discretisation scheme that was chosen for the SbiesHsler-Maruyama,
and for the ODEs is the Euler method.

Thetrue parameters, that generated the sample paths are summarised in Table 5thaiNote
in the multivariate systems the noise covariance mairand the noise on the observatidrRare
diagonal matrices and,ps represents the number of available i.i.d. observatmmrgime unit(i.e.

observation density). These need to be relatively high in the chaotic sydtémmparameters are
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(a) Double well simulation (b) Lorenz 3D simulation

t
(c) Lorenz 40D simulation

Figure 5.2: (a) Sample path of a double well potential system, used in theraepés, with two
(rather uncommon) transitions between the wells. (b) A typical trajectoryedf 8D system. (c)
All forty dimensions of the L40D, for the time period [0-5], wiéh= 8.

to be identified with any accuracy.
Finally, the basis functions that were used in all systems were Gaussiéh &)gwith centres
¢ chosen equally spaced within the time windows and widllssifficiently large to permit overlap

of neighbouring basis functions (Haykin, 1999):

A — max(centre — min(centre (5.9)
o Lab 7 '

wherelLap > 0, is the total number of centres.

Although there exists methods to optimise the locations of the centres, as wedl aidths
of the basis functions (Benoudijit et al., 2002), a uniform distribution ot#mroids is suggested,
with fixed widths which is a sufficientlglose to optimakolution. In this work RBFs are not
applied in a traditional way, such as fitting a response function to a settaf(daservations),
rather they are employed to create a basis function set in continuous timlénges a constraint

on the available solutions of the approximating functidpandb.
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Results

Figure 5.3 compares the results obtained from the RBF approximation algogthiine DW
system, with basis function densib = 40!, to the outcomes of a Hybrid Monte Carlo (HMC)
sample from the posterior process, using the true values for the driftliffadion parameters,
which provides a reference solution to the smoothing problem. Note that ghtttbe variance
of the RBF approximation is slightly underestimated, the mean path matches the eBdIGsr
rather well and the times of the transitions between the two wells are trackextityr The only
difference in the mean paths is located at the beginning of the time window. Thig i® the fact
that the RBF algorithm starts at a fixed point (n&0) = fixed), rather than optimised.

The variational approximation as employed here is likely to underestimate thesaiof the
approximating process due to the expectation in the KL divergence beiag veikh respect to
the approximating distribution in Eq. (4.4). Empirically this is found to have a welgtiminor
impact as long as the system is well observed, which keeps the true pogteigess close to
Gaussian. Where the true posterior process is strongly non-Gauesghim particular where it is
multi-modal a more significant underestimation exists, as might be expectedediits shown

here are typical examples, where the systems have uni-modal posteriors.

Figure 5.3: Comparison of the approximated marginal mean and varianaesiiogle DW reali-
sation), between the “correct” HMC estimates (solid red lines) and the Ri&tiemal algorithm
(dashed blue lines). The crosses indicate the noisy observations.

To provide a robust demonstration of the consistency of the results oBReaRproximation,
with respect to the original discretized VGPA, one hundred differealis&tions of the obser-
vation noise, from a single dataset, were used. Here the number of bast®ohs in the RBF
was increased to explore convergence of the RBF to the original VGIRAnfry statistics from

these experiments, on the DW system, concerning the convergence oé¢henkergy obtained

IHereM denotes the density of the basis functions per time unit. Hepge= |t —to| x M and in this example
Lap = 400.
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from the RBF approximation algorithm compared with the one from the origitzPA;, shown

in Figure 5.4(a). The 25, 50 and 75 percentiles from these 100 realisaierplotted when the
system has converged to its minimum free energy. Is is apparent that wightheor thirty five
basis functions per time unit{ = 35), the RBF algorithm reaches the same free energy values as
the original VGPA.

In addition to Figure 5.4(a), Figure 5.4(b) provides a similar summary, plotteglifference
between the free energies of the RBF and the VGPA, as a function of foasisons density,
clearly showing that for this system an RBF with 40 basis functions per timasusiiffficient to
capture the variation with no detectable loss of information.

The new RBF approximation algorithm is extremely stable, when estimating the stat o
systems concerned, and converges to the original VGPA, given #cienf’ number of basis
functions. This is also apparent in comparing the[Klg] divergence (Kullback and Leibler,
1951), between the approximatioméVGPA, RBF) and the “true” (HMC) posteriqr, as shown in
Figure 5.4(c), on a typical realisation of the DW system. This KL divergentich is integrated
over the whole time window, is useful to measure the goodness of the RB&xapption which
is clearly comparable to the original VGPA. The non-zero value of thiggarece is related to the
approximation error induced by the Gaussian process approximation torth@awussian posterior
distribution.

To address the sensitivity of the RBF approximation to the widths of the Gausssénfunc-
tions and the effect of this on the convergence of the free energy aarmop of the original
VGPA, against the RBF algorithm took place, for fixed basis functionitdeegual to forty per
time unitM = 40, while varying the width of the basis functions. This was again repeated for
one hundred different realisations of the observation noise (of the 3¢m) and the summary
results are shown in Figure 5.5(b). It is apparent that the performafnite RBF algorithm is
very stable for a wide range af values (note the logarithmic scale on the x-axis). It is possible
that this is an effect of the high number of equidistant basis functions tsthosen and which
provide good coverage in the time domain. Repeating the same experimentweth(fé = 10,
Fig. 5.5(a)) basis functions shows very similar behaviour, although tledpproximation is un-
able to match the original VGPA due to having insufficient basis functionsairAghe stable
region is wide and flat and only when the value of the width is pushed to thenessr does the
algorithm produce instabilities.

Figures 5.6(a), 5.6(b) and 5.6(c) compare the results obtained fromBReaRproximation
algorithm, on a twenty time unit inference winddw= [0,20] of the L3D system for fixed basis
function densityM = 40, against the “correct” posterior process obtained from a HybridtMo

Carlo (HMC) method, on a single realization, given the true parameter seasrghown on Ta-
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Figure 5.4: (a) Comparison of the log free energy, at convergemte/ebn the RBF algorithm
(squares, dashed lines) and the original VGPA (solid line, shadeparé&ae DW system. The plot
shows the 25, 50 and 75 percentiles (from 100 realisations) of theriezg\e (b) The mean value
(black squares) and the variance (red dashed vertical lines) of fleeedi€e of the free energy
between the RBF approximation and the original VGPA, obtained from ondrhd realisations
of the observations noise. (c) Shows a similar plot (for a single realisdtorthe integral of
the KL[p||g] divergence, between the “true” (HMC) and approximate VGPA (dashegdshaded
area) and RBF (squares, dashed lines) posteriors, over the whole imtewty, t¢]. All plots
are presented as functions of basis function density.

ble 5.2. It is worth noticing that in this case obtaining results using HMC methadsman-trivial
and required careful tuning and convergence assessment. Moils dbtaut sampling with the

HMC algorithm are given in Chapter 7.
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Figure 5.5: Comparison of the log free energy, at convergence, betitee RBF algorithm
(squares, dashed lines) and the original VGPA (solid line, shadell amghe DW system as a
function of the basis function widtt\,. The plot shows the 25, 50 and 75 percentiles (from 100
realisations) of the free energyLeft panel: The value of the basis function density is fixed to
ten per time unitfl = 10), whereas in thRight panel: the basis function density is increased to
forty (M = 40) per time unit. For both experiments the parameiels andR were identical and
kept fixed to their true values. Note also the logarithmic scale on the -x- axis.

Similarly to the DW case, the marginal mean paths on each dimension of the systein ma
the HMC results and the variance of the RBF approximation is again undertstintdowever,
after having a closer look to the experiments performed it was realised ¢hantierestimation of
the variance in higher dimensional systems is not the general case (ashiewsilen in Chapter
6). Here this result is explained by the fact that the smoothing window for M€ Iresults was
originally fifty time units, while the RBF approximation algorithm was performed amiye first
twenty time units.

To provide robust results illustrating the convergence of the RBF appation to the original
discretized VGPA on this multivariate system thirty different realisations obtservation noise,
from a single dataset, were used. Summary statistics from these experiaretits,L3D system,
concerning the convergence of the free energy obtained from theaRpBfoximation algorithm
compared with the one from the original VGPA, is shown in Figure 5.7. Thasaghows that the
RBF version is relatively insensitive to the number of basis functions per timiteabove some
threshold, and seems to actually produce slightly better estimates in terms adtemnérgy.

Finally, results are presented for the stochastic Lorenz 40D system.eBgk(a) shows the
approximated means for all forty dimensions of the system for a relatively 8me window. To
obtain these results forty basis functions per time unit were used. Figybg St®ws the marginal
variances for each dimension and Figure 5.8(c) plots the squarededidfeof the approximated
means with the true sample path (see Figure 5.2(c)) showing that for the anbatgmod estimate

of the mean state is produced.
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Figure 5.6: A comparison of the approximated marginal means and variéofcassingle re-
alisation of the L3D system), between the “correct” HMC estimates (daslikelines) and the
variational RBF M = 40) algorithm (dotted blue lines). The results are plotted separately on each
dimension. The noisy observations have been omitted for better illustratioa ofdtginal means.

The zoomed sub-plots highlight the underestimation of the variance.

5.5 Results of parameter estimation

This section presents the results for the estimation of (hyper-) paramétbes gystems consid-
ered, following the same experimental setup as in Section 5.4. The origirf2A\&Bproximation
can be used to compute a bound on the marginal likelihood Eq. (4.6) anddimmite estimates

of (hyper-) parameters, including the system noise and the drift paremfeée Section 4.5). Once

66



Chapter 5 RADIAL BASIS FUNCTION EXTENSION
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M
Figure 5.7: Comparison of the log free energy, at convergence, betittee RBF algorithm
(squares, dashed lines) and the original VGPA (solid line, shadell@rghe L3D system. The
plot shows the 25, 50 and 75 percentiles (from 30 different realisatafrtbe free energy. The
log free energy is plotted as a function of basis function densities.
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Figure 5.8: Fig. (a) shows all the approximated mean paths (of a singleateali®f the L40D
system), obtained from the variational RB% & 40) algorithm. In Fig. (b), the marginal variance
around each mean path. Fig. (c) illustrates the squared differenceaypheximated means with
the true sample path (see Fig. 5.2(c)).

an upper bound has been achieved, one can attempt to estimate the)(bgmmneters by com-
puting the derivatives of th&agrangian (see Eq. 4.14), with respect to the drift and diffusion
parameters:

0L 0L

0 and EoR (5.10)

and then employ a conjugate gradient optimisation algorithm (Nabney, 2002).

In the RBF version this is also possible and empirical results show that, etdetd®e univari-
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ate case, this is faster and more robust compared to the original VGPArdtile log approximate
marginal likelihood, for the DW system is shown in Figures 5.9(a) and 5.®%¢n with a rela-
tive small basis function density, tte# and® minima are very close to those determined by the
VGPA. Foro? around thirty basis functions/{ = 30), are needed to reach the same minimum. For
the drift (8) parameter the minimum is almost identical using only ten basis functMns L0)

per time unit. Thus if the primary interest is in the drift parameters one can eraplefatively
compact RBF approximation, which provides speed and robustnesttbane still obtain good

estimates for the parameters.

: -¢-RBF(10)
32 E = RBF(20)
: -4-RBF(30)

RBF(40) 3

,-°[=RBF(10)

| = RBF(20)
-+ RBF(30)
RBF(40)

—VGPA

2. " " i " -
2.
62 0.4 0.6 0.8 1 12 85 06 07 08 09 1e 11 12 13 14 15

(a) o2 profile (b) 8 profile

Figure 5.9:DW system: (a) Profile marginal log likelihood for the system noise coefficight
keeping the drift parametérfixed to the true one. (b) as (a) but for the drift paramétkeeping
o fixed to its true value. Both simulations run fist = [10,20,30,40], basis functions per time
unit and compared with the profiles from the VGPA on a typical realisationeobtiservations.
The dotted vertical lines represent the true values of the parameteretieatted the data.

The above conclusions are supported by further experiments, oruadedd different realisa-
tions of the observation noise on the same dataset. Figures 5.10(a) afinj,e40ibit consistency
in the estimates of the maximum marginal likelihood parameters both in value andiligridn
addition, the biases that exist in both estimates are shown more clearly arahaigtent with the
relatively sparse noisy measurements. For the drift parameter Fig. b.1l@¥lbias is relatively
small, whereas for the system noise Fig. 5.10(a) it is larger. This coulddaired by the fact
that in the example considered here there exist two transitions between tsblostates, which
for a short time window is rather unlikely, and thus suggests a higher naignee than is really
present.

Apart from the conditional estimation results, a series of joint estimation of dhenpeters
was also performed. These start from nine different points on a two g&imead grid, spanning
the effective parameter space. Figure 5.11(a) shows a contour ptesenting the logarithm of
the free energy, and the nine different trajectories of the joint paramstieration processes. This
shows robust behaviour with all trajectories converging to a good appation, close to the true

parameter values, regardless of initialisation.
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Figure 5.10:DW system: (a) Conditional estimation of the system noise coeffic&keepingd

to its true value. The comparison is between the results from the RBF algostiuvargs, dashed
vertical lines) and the original VGPA (horizontal dashed line, shaded)ail he figure shows the
25, 50 and 75 percentiles of the estimated values (from 100 differeligatans). (b) as (a) but
for the drift paramete® keepingo? fixed to its true value. Both plots are presented as functions
of increasing basis function density.
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Figure 5.11:DW system: Contour plot (a) presents the trajectories of nine joint estimations of
botha? and®, from different starting points. Results obtained wih= 40 basis function density.
(b) shows the log energy profile, in the parameter space.

Results on parameter inference for the Lorenz 3D system are shownurefEdL2. All sub-
figures show clearly that the RBF and original VGPA produce consiststits. The system
noise parameters are well identified for thevariable Fig. 5.12(b), but not so well identified for
the other two variableg andz, Figures 5.12(d) and 5.12(f) respectively. This is related to the
dynamics of the system since tiheandz components both have more complex interaction terms
in their evolution equations. Estimating system noise parameters from sjgssst@time, noisy
observations remains a significant practical challenge for all paramé&teemce methods.

Results for drift parameter inference for the Lorenz 3D system shawttbee is a bias in the
estimates for the andf3 parameters, Figures 5.12(a) and 5.12(e) respectively. The sduitis 0
bias is not clear, and further work is necessary to investigate whethes tieisited to systematic
error in the variational method, or a more general problem for likelihosgdanference in such

chaotic dynamical systems. Tlpeparameter, as shown in Fig. 5.12(c), is well estimated. It
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Figure 5.12:L.3D system: Profile approximate marginal log likelihoods for the drift and diffusion
parameter® andX (diagonal elements). Each profile is obtained by keeping all the othempara
eters fixed to their true values. Left column presents the profiles for theodia), p (c) andp (e),
while the right column for the system noise variance on each dimeogi¢n), 05 (d) anda? (f).

All simulations run withM = 40, basis functions per time unit and are compared with the profiles

from the VGPA on a typical realisation of the observations. The dotted gélities represent the
true values of the parameters that generated the data.

should be stressed that obtaining such profile plots is computationally irgesisie it requires
minimisation of the free energy for relative long time windows (20 time units foretipdsts) at a
range of parameter settings.

The reduction in the complexity of the algorithm, does not produce a similactieduin
computational time. Figure 5.13(a) compares the log number of iterations oBRealgorithm

needed to reach convergence with the number of iterations from the VGR#&se results are
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Figure 5.13: (a) Comparison of the log number of iterations to reach agewee, between the
RBF algorithm (diamonds, dashed vertical lines) and the original VGPAd(korizontal line,
shaded area) on the DW system. The plot shows the 25, 50 and 75 tdescémom 100 re-
alisations). (b) same as (a), but for the Lorenz 3D system from 30reiffeealizations of the
observation noise. Both plots are presented as functions of RBF density.

summaries from 100 different realizations (of the observation noise iyl slataset) of the DW
system and one can clearly see that the VGPA, while optimising a larger narhparameters,
converges in fewer iterations. Figure 5.13(b) presents similar resulfsdont30 realisations of

the Lorenz 3D system, where the two algorithms are more comparable.
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Figure 5.14:Left panel. Profile approximate marginal log likelihood, obtained with the VGPA
algorithm, for the force (drift) parameter, from a single realisation of theD_4ystem, keeping
the system noise covariance matkix to its true valueCentral panel: Same profile but obtained
from the RBF approximation with basis function density twenty per time Rigiht panel: Same
as central, but with increased basis function density to forty per time unill. parsels the vertical
dashed line represents the true value of the forcing parameter.

Results of parameter inference for the 40 dimensional Lorenz systesh@sm in Figure 5.14.
Here the results show consistency for the RBF approximation and that tklatisely insensitive
to RBF density. In all cases the minimum for the profiles is well defined ané tbahe true value

used to generate the trajectory and thus observations. These newsbseultthat both the VGPA
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and the variational RBF approximation can be applied to relatively high dimesisitynamical

systems and can provide reliable estimates of (hyper-) parameters in yimessidal systems.

5.6 Discussion

This chapter presented a new radial basis function approximation thatsttee variational Gaus-
sian process approximation (VGPA) algorithm for Bayesian inferenudiffoision processes. The
new method, is validated by numerical experiments on three non-linear syfteswdts show that
the new algorithm converges to the original VGPA with a relatively small nurabbasis func-
tions per time unit. However, it was not possible to provide a principled wayeterchine this
value, and thus theoretically examine the sensitivity of the RBF approximatiomstangdelling
choice.

Different systemsuggestedlifferent optimum values, but in most of the cases less than 40%
of the number of parameters required in the original VGPA had to be optimided.makes the
algorithm more stable, however the computation benefits are not as signifschad been hoped,
which is related to the more complex (non-linear) optimisation problem when waights on
RBFs as the control parameters in the variational optimisation process.

The algorithms were extended to higher dimensional systems and shownittepgood state
and parameter estimates even in a forty dimensional dynamical system. Inrmptagse results
several numerical challenges related to the sensitivity of the original Vi@R#od initialisation
were encountered. In the 1D case the RBF version was extremely anmisbuld be initialised
almost arbitrarily, however in the higher dimensional cases some careguisad to initialise all
the algorithms.

Although the new algorithm is stable with fewer parameters, that was nattesflagn a similar
reduction in the computational time. This may be related to the fact that the claasisfunctions
that was chosen (i.e. Gaussian) is not suitable to approximate the varigg@raateterg\; and
by.

Another argument is that the RBF algorithm still works in a discrete time franievediveit
with an alternative parametrisation. In the original VGPA the control parasate discretized,
with a relatively small time step for numerical stability (edty= 0.01). This discretisation is also
inherited in the implementation of the RBF version of the algorithm and even thalltiie time
varying basis function maps can be pre-computed off-line, there areatifids by the limitations
of each discretisation scheme.

The experiments have also highlighted issues around initialisation and the tetimpof the

expectations (see Appendix A), required in the free energy. At ptda® options have been
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employed: a \niversa) numerical approximate approach based on the unscented transforma-
tion (Julier et al., 2000) and thesy(stem dependénéxact analytic calculation of the required
moments (Appendix D). Neither is particularly satisfactory — the unscentadftranation re-
quires careful tuning to ensure stability and the analytic derivation is timeuoging, especially

with high dimensional systems and potentially error prone in implementation, ahttibcgn be

partially automated using symbolic manipulation.
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6.1 Foreword

The current chapter proposes another, alternative, re-parartietrigathe previously described
VGPA algorithm (Chapter 4), in terms of polynomial approximations. The likeidtr g (x;) in
Eq. (4.7) is defined in terms &; andb;. These functions, upon discretisation, result in a finite
set of discrete time variables that need to be inferred during the optimisatioadure.

In Chapter 5, these time varying functions were approximated with basisdorexpansions
with support over the whole time domain (i.€.= [to,tf]). This allowed a reduction in the total
number of control variables in the optimisation step, as well as some priootowér the space of
functions admitted as solutions. However, fyeandb; variational parameters are by construction
discontinuoust observation times. Thus a large number of basis functions was retuaapture
theroughnessit observation times (see Fig. 6.2).

In the same spirit, the solution proposed here to overcome this issue is to tthefiapproxi-
mations only between observation times suchtaga], (tk1,tkz], - - -, (tkm, t]. This way a function
approximation can be defined on each sub-interval (without overlapjuatiher reduces the total
number of parameters to be optimised. Although simple in concept, this appsostubwn to be
very robust and able to recover good estimates of the states and {ipgrameters on the systems

tested.

6.1.1 Chapter outline

The chapter begins with Section 6.2, where the new suggested polynomiaiertes explained
in detail for the general multivariate case. The new approach is testedificicd data gener-
ated from a variety of systems, as described in Chapter 3. The experirsenip is given in
Section 6.3.1, followed by results on state and parameter estimation in Secticgharéd3.3.3,
respectively. The Lorenz '96 system, due to its relatively higher dimeakftgncomparing to the
other systems tested here, is treated as a special case in Section 6.3.4aptee ends with a

discussion.

6.2 Polynomial approximation of the variational parameter S

The variational parametefs andby are represented by a finite set of discrete time variables. The
size of that set scales proportionally to the length of the time window of inéere¢he dimension-
ality of the data (state vectar) and the time discretisation step, as defined in Eq. (5.3).

SubstitutingA; andb; with polynomials, defined locally on each sub-interval, the following
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expressions are obtained:
Al = A+ Al xt4+...+ Al Mo, (6.1)
Bl = bl + bt + bl xtMO (6.2)

whereAtj and Btj are the approximating functions defined on ftié sub-intervaI,Aij e Obxb
andbij € 0P are thei'th order coefficients of th¢’th polynomial and < {0,1,...,Mo}, with Mo
representing the order of the polynomial.

Itis important to distinguish from the case where the polynomials are fitted batilue actual
measurable valueg.g. interpolation with cubic splines). Here they are rather fitted between
observation timesNote also that the order of the polynomials betwéétandf)tj, or even between
the j’'th polynomial of each approximation, need not to be the same; nevertheldss absence
of any additional information about the functions, or lack of any theoregigalance, a practical
approach is taken to suggest the same order of polynomials, under tfidaothat they provide
sufficient flexibility to capture thdiscontinuityof the variational parameters at observation times,

as shown in Figure 6.1.

(t1 - t2] : (t{k-1} - tk]

[

to tk

Figure 6.1: An example of theocal polynomial approximation, on a univariate system. The
vertical dashed lines represent the times the observations occur angagcomial is defined
locally between two observation times. The filled diamond and circles indicate closedvbde
the clear diamonds define open sets. Note that only the first polynomial iredefi closed set
from both sides, to avoid overlapping.

The new expression for théagrangian (see Equation 4.14), for tfjith sub-interval thus
becomes:
L= 71(ax).0.2) = | (A (et Alme—B) +r(@(& +Als+ SAIT - ) )t
te
(6.3)

whereT/ c T, or T = {T1U~--UTj U---UTJ}, with J > 1, being the total number of disjoint

sub-sets.
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The expressions for the polynomial approximations, Eq. (6.1 and 6:2hearesented more
compactly using matrix notation, which simplifies the presentation and is usedtffisrpoint
forward:

Al = Al xpi(t) andbl = Bi xpl(t). (6.4)

Schematically these matrix - vector products can be seen as:

AL(t) Ao Al Alwo 1
~ j reshape t Ajz(t) A1270 Alz,l o A%.Mo t
At . = . o . 1
j j j j M
ADZ(t) ADZ,O ADZ,l ADZ,Mo tHe
——
Al pI(t)

Here Aﬂ, represents the'th (scalar) component of th@lij coefficient in thej’th sub-interval.
Effectively, '[heAij weights have been reshaped in column vectors and packed together in one
matrix of sizeD? x (Mo+ 1), (similar to the RBF case). For tlﬁ)é a similar procedure is followed,

only here things are simpler because bgj]e:oefficients are already vectors, so there is no need to

reshape them. That yields:

bi (t) bi,o b:jL,l a bgL,Mo 1
Bj - b%(t) . bJZ,O bJZ,l e bJZ,Mo % t
t . - . . . . )
bIjD (t) bljj,o blj3.1 a blja,lvlo tMo
BI pl(t)

Wherebﬂ"i represents theth (scalar) component of thl«;}j (vector) coefficient.

Equation (6.4) shows that the vectgs(t) can be precomputed off-line for all predefined
discrete time domains, reducing the computational complexity of estimating theca@fiof the
polynomials. p!(t) is precomputed and stored column-wise in a matrix, as shown on Table 6.1.
Thus the reconstruction of the approximate variational paran@ﬂe‘mdﬁtj, for their whole time
domain, can be done by a simple matrix - matrix multiplication, such/as AJ x IIi(t), where
the matrixIT! (t), is defined as on Table 6.1.

The number of coefficients for both variational parameﬁerandﬁt is:

variables, wher® is the system dimensioMo is the order of the polynomials ardds the total
number of disjoint sub-intervals (i.e. the number of observation times irenldasone). Usually,

it is anticipated thak po1y < Niotal, thus making the optimisation problem smaller.
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1 1 1 1
, Gerst terost st 0 Wk
(1) = +8 k2ot kr3at +
M M M M
bis Goos toss 0 Ged

Table 6.1: Example dfT! (t) matrix, defined ofT"} = (i, t,1]. Note that because the time interval
is discretised and defined on an open set from the left side, the firdtqfogwaluation isty, 5,
instead ofy.

The original VGPA algorithm, used a scaled conjugate gradient (SCGiithligo(Nabney,
2002), to minimize Eq. (4.14) with respect to the variational paramétei@ndb;. The same
procedure is used here computing the gradients of the approximate bagrdfg. (6.3), with
respect to the coefficientd! and B!, of the re-parametrized variational parameters, for each sub-
interval (details can be found in Appendix C). As in the RBF extension [§&hab), to further
improve computational efficiency and stability a modified Gram-Schmidt ortradigation is ap-
plied (Golub and van Loan, 1996), to the rows of the pre-compIéd) matrices, as shown in
Table 6.1, on each sub-interval separately. In practice this orthogatiatisiramatically reduces
the number of iterations required for the algorithm to reach convergence.

Figure 6.2, demonstrates how the new proposed methodology better mpgtes the linear
and offset parameter&\( andby), of the original VGPA (Figures 6.2(a) and 6.2(b)), compared to
the RBF extension as presented in the previous chapter. The large nofiaais functions that
are used for this example (forty per time unit) makes the approximations toncasesing fluc-
tuations close to the observation times (Figures 6.2(c) and 6.2(d)). Thealgnomial scheme
suggested here, thanks to the locality of the approximation (there is no mvi@debetween the
polynomials), achieves a better fit of the original parameters (Figures)@agd 6.2(f)), produc-
ing smoother results. Notice that although the RBF extension uses fortyfbasion per time
unit, the new polynomial extension, with 9'th order polynomials can approxithateariational
parameters better close to observation times, compared to the original V& re

The proposed solution has an additional advantage over the originah é(gBrithm in that
when solving the ODEs for the marginal means and covariances of thexappte Gaussian
process Eq. (4.12 and 4.13) one can apply high order solvers, siRbrge-Kutta 2nd/4th order
schemes by using thexactmid-points ofA; andby, computed through the polynomial functions,

i.e. evaluating
Al(t+053t) = Al x pl(t+0.58t) and bl (t +0.58t) = BJ x pl(t +0.53t),

rather than approximating them. In Figure 6.3, when the time discretisation sedatigaly small

78



Chapter 6 LOCAL POLYNOMIAL EXTENSION
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(a) A(t) from original VGPA (b) b(t) from original VGPA
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(c) A(t) from RBF extension (d) b(t) from RBF extension
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(e) A(t) from LP extension (f) b(t) from LP extension

Figure 6.2: Left column presents the variational linear paranfgteirom a DW simulation with

one observation per time unit onTa= [0, 8] time window, for the original VGPA algorithm (a)
and the new RBF (c) and polynomial (e) extensions. Right column presiemtar results for the
bias parametd.

(e.g.dt = 0.001), both the VGPA and L'Fprovide similar profile free energy results. The profiles
show the value of the free energy at algorithm convergence as a faraftibe drift parameter
value, for a fixed diffusion variance and are used later to demonstrampter estimation where
they are explained in more detail. When the time step increases the new LRiapgiron remains

smoother thus making the minimum clearer.

1P from here onwards is a shorthand notation for the new local polyri@xtiension.
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6t =0.001 6t=0.01 ot =0.015

Figure 6.3: Marginal profiles of the variational free energy, at cayesmce, as a function of the
drift parametes®, given the system noise?. The continuous line represents the profile from the
LP approximation of second order (il&o = 2), while the dashed line represents the same profile
but with the original VGPA framework. The results are from a single re@isaf the OU process
(see Chapter 3) and both algorithms use the Runge-Kutta 2nd order titegreethod. The time
discretisation step ranges fradh= 0.001 (top left), todt = 0.03 (bottom right).

6.3 Numerical simulations

Before proceeding in exploring the convergence properties of the_Rea¥gorithm, compared to
the original VGPA framework, this section establishes the experimental s&tis used in the
following sections. The systems considered here are the one-dimen®idriah. 6.4(a) and DW

Fig. 6.4(b), and the three-dimensional L3D (as reviewed in Chapter 3).

6.3.1 Experimental setup

In the numerical experiments a fixed inference window of twenty time unitsT(i-e.[0, 20]) was
considered for all systems and the time discretisation was ut+00.01 to ensure numerical
stability. Table 6.2 summarizes theie parameter values, that generated the sample paths for the

following simulations.

In a similar strategy to Apte et al. (2007), the discretisation is applied only indktepor
approximation; the inference problem is derived in an infinite dimensioaaldwork (continuous
time sample paths), as shown in Chapter 4. The Euler-Maruyama reptesemtfathe prior

process (Eq. 4.1), leads to the following discrete time analogue:

Xk+1 = Xk + f(t,Xk; @) Ot + v 328t &, (6.6)
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Figure 6.4: Typical examples of OU (a) and DW (b) sample paths. Thesplsaaths will be
used as the histories in the experimental simulations, that produced theailoses.
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Figure 6.5: (a) A typical realisation of the stochastic Lorenz '63 systeninas series in each
dimension. (b) The same data butén- z plane where the effect of the random fluctuations is
more clear.

wheregx ~ A(0,I) and the positivénfinitesimal dtin Eq. (4.1), has now been replaced by a pos-
itive finite numberdt. Moreover, this expression can be used to provide approximate santipge pa
(in terms of discretising a stochastic differential equation) from the priocgss (Higham, 2001;
Kloeden and Platen, 1999). This first order approximation imposes alsutabll discretisation

stepdt, if good accuracy is to be achieved.

6.3.2 Results of state estimation

The presentation of the experimental simulations begins with results for the@¥ss. Fig. 6.6,
shows the results from the LP approximation of the VGPA algorithm, of polyrnardarMo = 5.

For this example the observation density of 2 observations per time unitg#éhin the whole
time domainT = [0,20]), with Mo =5 andJ = 41, produces a set tf,oy = 492 coefficients to
be inferred, compared ti§;q;5 = 4000 in the original VGPA framework. This is roughly .B%

of the initial optimisation problem. For this system since the initial stgte 0, is fixed in this
simulations, as mentioned earlier, one can use the induced non-stationaranog kernel func-

tion Eq. (3.7) and compute the exact posterior process. Comparing thits r@stained from the
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System|| to | tf ot 0 > | Nps| R
ou 0| 20| 0.01 2 1 2 | 004
DW 0|20 0.01 1 08| 2 |004
L3D 0| 20| 0.01]| [10,28,2.6667 | 6 10 2

Table 6.2: Experimental setup that generated the data (trajectories ardailuss). Initial times
(to) and final timest() define a fixed time window of inference, whiBitis the time discretisation
step. @ are the parameters related to the drift function, whil@ndR represent the noise (co)-
variances of the stochastic process and the discrete observatioestredp. In the multivariate
system these covariance matrices are diagddays represents the number of i.i.d. observations
per time unit(i.e. observation density), which are taken at equidistant time instants.

LP approximation with the results from a GP regression smoother with the Qiglk&e match
is excellent, as expected for a linear system, where the approximation istibatly optimal (in

the limiting case asét —0).

m(t) (2 x std(t))

0 2 4 6 8 10 12 14 16 18 20
t

Figure 6.6: Marginal values of the means (solid line) and variancesédhra@a) obtained by the
LP approximation of 5'th order on a single realisation of the OU system. Thdtsefrom the GP
regression, on the same observation set, are visually indistinguishaldesamahitted. The circles
indicate noisy observations.

To provide a robust demonstration of the consistency of the results ofRtemproximation,
with respect to the original discretized VGPA, fifty different realisationthe observation noise,
from a single trajectory, were used. The order of the polynomials wasased to explore con-
vergence of the LP to the original VGPA. Summary statistics from these iexgmats, on the OU
system, concerning the convergence of the free energy obtainedtehP approximation al-
gorithm compared with the one from the original VGPA is shown in Figure §.7(ae median,
the 25'th and 75'th percentiles are plotted in boxplots, while the extendéidaledashed lines
indicate the 5'th and 95’th percentiles, from these 50 realisations, wheystem has converged
to its free energy minimum. For this example, with only second order polynomial$/fae- 2),
the LP algorithm reaches the same free energy values as the original. VGPA

Figure 6.8(a) compares the results obtained from the LP approximation witbreler polyno-
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Figure 6.7: (a) The median and the 25'th to 75’th percentiles in boxplots ofdtiational free
energy, from fifty realisations of the observation noise, as a functicheofncreasing order of
polynomialsMo, keeping the drift and diffusion parameters fixed to their true values.nBgtk
vertical dashed lines indicate the 5'th and 95'th percentiles. The horizdashed (blue) line
represents the 50'th percentile of the free energy obtained from thieariGPA on the same
50 realisations and the shaded area encloses the 25'th to 75'th percéhjilBsmmaries from
the same experiment concerning the number of iterations both algorithmsdneectenverge to
optimality. Again, the horizontal lines (and shaded area) represetitrebtained for the original
VGPA, while boxplot results from the LP approximation, as in (a).

mials, on a single realisation of the DW system, to the outcomes of a Hybrid Morite(@MC)*
sample from the posterior process, using the true values for the driftiinsion parameters. The
HMC solution is assumed here to provideeference solutioto the smoothing problem. The set-
ting, for the DW example, is 2B00 iterations of which the first, 800 are considered d&sirn-in
and discarded. Each iteration generates 80 posterior sample paths g&tém svith artificial
time &t = 0.01, and the last one is considered as the candidate sample path. In @@@i0®0
sample paths are generated which are sampled uniformly to produce gf§02€amples from
which to compute the marginal mean and variance as shown in Figure 6.8@)convergence
results of this simulation are shown in Figure 6.8(b). Even though thererexishtly proposed
MC sampling algorithms, such as tigeneralised HMCas suggest by Alexander et al. (2005)
which speed up the convergence of the Markov chain, here a ratlssicglahybrid Monte Carlo
is implemented, as was first introduced by Duane et al. (1987).

Although the variance of the LP approximation is slightly underestimated, the pegtan
matches the HMC results and the time of the transition between the two wells is tracked
rately. The variational approximation as shown in Chapter 4 is likely to ustierate the variance
of the approximating process (Minka, 2005) as is often the case whexpketation in the KL
divergence is taken with respect to the approximating distribfiiiv&q. (4.4).

Figures 6.9(a) and 6.9(b), present results comparable to Figured &rt{e6.7(b), but for

the DW system. Again 50 different realisations of the observation noise &gingle trajectory

1The HMC algorithm is reviewed briefly in Section 7.2.3.
2That is KL || pt] instead of computing Klp ||ct], wherepy is the true posterior whilg; is the approximate one.
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Figure 6.8: (a) Comparison of the approximate marginal mean and variaheesfngle DW

realisation), between the “correct” HMC posterior estimates (solid grees #nd light shaded
area) and the LP approximation, of 5'th order, (dashed blue lines aikdstladed area). The
circles indicate noisy observations. (b) Trace of the potential enemyz¢ntal axis is in log-

space), of the Hamiltonian,in the HMC posterior sampling. The vertical ddstedndicates the

end of the burn in period and the beginning of the posterior sampling.

were generated and both LP approximation and VGPA algorithms were apgiNet the true
parameter values for the drift and diffusion coefficients. The summanesthese runs show the
consistency of the LP approximation, when applied to non-linear systemesal@brithm exhibits
stability and slightly outperforms the original VGPA framework, in terms of minimizhngfree
energy, although this has a very minor impact in terms of solving the ODESAER, 4.13) to

produce the marginal means and variances as shown in Figure 6.8(a).

10r

12345678 91011121314151617181920 12345678 91011121314151617181920
Mo M

0
(a) Variational free energy (b) Number of SCG iterations

Figure 6.9: (a) Similar to Fig. 6.7(a), but from fifty different realizatiofishe observation noise
of the DW system. (b) Again, similar to Fig. 6.7(b), but for the DW system.

However, when the LP approximation is applied one must be aware that tinglecaty of
the algorithm (i.e. numbers of degrees of freedom), scales not only wittrdee of the imposed
polynomial, but also with the frequency of the measured values (i.e. a@igerdensity) as shown
in Eq. (6.5). Thus, to address the sensitivity of the LP approximation,thghiese quantities vary,
the algorithm was tested for<4 Ngps < 10 and 1< Mo < 10, on both OU and DW systems as
shown in Figures 6.10(a) and 6.10(b), respectively. At each poirthergrid, the result from

thirty different realisations of the observation noise were averagegmsegnted. The behaviour
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of the LP approximation is similar in both systems tested, and confirms the initial liedief
when a system is very frequently observed, one can apply even apiolaomial approximation

(Mo = 1), between observation times to approximate the variational parameters.

3 3.5 4

log(F)

2 00
Nobs Mo

(a) OU system (b) DW system

Figure 6.10: (a) The log average free energy, at convergermm, thirty different realisations

of the observation noise, of a single OU trajectory, as a function of batbrghtion density and
order of polynomials (i.elog(F (Nobs, M0))). Figure (b), repeats the same experiment but for the
DW system.

To provide a more complete assessment of how this new LP approximatiomaappo the
VGPA algorithm scales with higher dimensions the same experiments werd¢aepeaa multi-
variate system, namely the Lorenz '63 (L3D). Figures 6.11(a) and 6,lsibw the approximated
mean paths obtained with a 3'rd order LP algorithm, against the posterior padtfasm computed
using HMC, inxy andxzplanes respectively, from a single realisation of the stochastic L3D shown
in Figure 6.5(a). The observation density for this example was relativety(higs= 10, per time
unit), hence it was possible to relax the order of the polynomialdde-= 3.

In this example, unlike the previous case of the DW, the LP approximatioresteates the
marginal variance (Figure 6.12(b)) compared with the estimates obtainesiray HMC. How-
ever, the same effect is also observed when applying the original V@®iefvork, hence this is
not an artefact of the polynomial approximation but rather of the varidticaaework.

The tuning of the HMC sampling scheme was similar to the one used to obtain thegoste
estimates for the DW system, only in this case a smaller artificial time step was agcass
correctly sample the posterior process. In total(®® iterations of the HMC algorithm were
used, with the first D00 consideretburn-in. Each iteration integrated the artificial Hamiltonian
dynamics (Eq. 7.14) for 50 iterations, where only the last one was thédededample path. The
artificial time step wast = 0.004. Sampling from high dimensional distributions with the HMC is
not a trivial task. Continuous timemple pathswhich when discretised result in a large number
of random variables that need to be jointly sampled at each iteration is chiafierkepr the L3D
system considered here, the dimensionality of the discretised sample pii=i$003 (i.e. one

needs to sample jointl),, random variables at each iteration). The trace of the potential energy
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Figure 6.11: The marginal means, obtained from the LP approximation amtMiesampling in
Xy (a) andxz (b) planes respectively, on a single realisation of the L3D (see Fig.)$.3(bboth
plots, the dots (black) are the results from the LP approximation (of 3adrprwhile the squares
(red) are results from HMC. Crosses (blue) indicate the noisy obsemga TheE|[-] notation that
appears in the figures axis represespectedalue.

of the Hamiltonian (for the L3D example), is presented in Fig. 6.12(a).
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Figure 6.12: (a) Trace of the potential energy of the Hamiltonian in the HVSEegpior sampling
of the L3D example. The vertical dashed line, indicates the end of the byyariod and the
beginning of the posterior sampling. Notice the logarithmic scale on the horizaxiea (b)
The ratios, in each dimension of the L3D, between the LP approximate variarihe variance
obtained by the HMC sampling (i. %%) as functions of time. The overestimation from the

LP approximation is apparent in all three dlmensmns
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The performance of the new polynomial framework scales well for this nauiéite system.
As shown in Figures 6.13(a) and 6.13(b), when comparing the minimisation dfetenergy
and the number of iterations to reach convergence, the LP approximatieryistable and fully
converges to the original VGPA with onlMo = 2 order of polynomial. The experiments were
extended up tdo = 20, and showed similar outcomes although with higher computational cost
and are omitted from the plots. The observation density considered\gse—= 10) implies that
Mo = 9is the limit where both algorithms LP and VGPA optimise the same number of parameter
For values ofMo > 9, the LP becomes more demanding in computational resources. However,
when tested wittMo = 3, Lpoly = 9,648 whilstN:ota) = 24,000 hence achieving 58 reduction

in optimised variables.
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Figure 6.13: (a) Boxplots of the free energy attained from 50 realisatibiine observation noise
(on a single L3D sample path) as a function of the order of polynorivalsThe horizontal dashed
line (and the solid ones above and below) represent the 25, 50 andcéntiles from the VGPA

free energy on the same data sets. (b) Presents a similar plot but forntbenaf iterations, in

the SCG optimisation routine, that convergence was achieved. In both poéxtiteme values
(outliers) have been removed for clearer presentation.

The reduction in the memory requirements of the algorithm does not prodiicglar reduc-
tion in computational time. Figures 6.7(b), 6.9(b) and 6.13(b) compare theenwohierations of
the LP algorithm to reach convergence with the number of iterations from@RAVThese results
are summaries from 50 different realizations (of the observation noisesimgle trajectory) of
the OU, DW and L3D systems respectively, and show that the VGPA algonithite optimising

a larger number of parameters, still converges in slightly fewer iterations.

6.3.3 Results of parameter estimation

The new LP algorithm is able to estimate the (hyper-) parameters of the afaieres dynamical
systems, in the same way as in the original VGPA algorithm. Chapter 4, destnibedays of
performing this task. First by constructing discrete approximations to theenmmsdistribution

of the parameters and second by providing Maximum Likelihood type-lItmstimates. Both
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approaches are based on the upper bound thatahational free energyprovides to the true
marginal likelihood (Eqg. 4.6). In this section the focus is on estimating the daifimpeter®
and diffusion coefficienk, although estimation of the prior distribution, over the initial state (i.e.

AN (Mo, To)) and the noise related to the observatiBnare straightforward extensions.
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Figure 6.14: OU system:(a) The profile marginal likelihood of the drift paramet&rkeeping

the system nois& fixed to its true value, obtained by the GP regression (blue circles) with the
OU kernel, which gives the exact likelihood, against the original VGPArdtlgm (green squares)
and the new LP extension with different order of polynomials. (b) The @iiato of the posterior
samples obtained with the HMC. The continuous green line shows; A, 0.5) prior of the
(hyper)-parameted, while the red circles connected with the dot-dashed line represent thetdisc
approximation to the posterior distribution obtained by the point estimates of takgybRthm with

4’th order polynomials. Both the HMC posterior sample histogram and the pf=imation have
been normalized, such that the area they define sums to unity. In bottsfipergertical dashed
line represents the true parameter value that generated the data.

Figure 6.14(a), compares the profile of the approximate marginal likelirafdtie OU drift
parameter, obtained with the original variational framework and the lodghpmial approxi-
mation, on a typical realisation. For this system the “true” marginal likelihoedbsaobtained
using a Gaussian process regression smoother (with OU kernel funciiso the LP framework
converges to the original VGPA when 4'th order polynomials are employbdsh is consistent
with the state estimation results in Fig 6.7(a). The minimum of the profile can be wetlfidd
with only 2'nd order polynomials, which suggests that for the drift paramit¢his example, the
bound on the true likelihood does not need to be very precise, if a paimtagsr is sought.

Figure 6.14(b), shows the results from the LP (of 4’th order) discrppgaximation to the
posterior distribution of the drift paramet@using ag(4.0,0.5) prior. Here the results are com-
pared with 80000 posterior samples (presented as a histogram), obtained from fepeimdient
Markov chains (20000 samples per chain), using HMC sampling. The same prior distribution
(continuous green line) is used in both cases and in addition the resulteaeated such that the
areas defined by the histogram and the approximate discrete estimatesdless),csum to one.
Although the results, for both algorithms, are slightly biased the LP algorittuviges a better

approximation because for a linear system, such as the OU, the variatinsdi@n process yields
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an optimal approximation while the HMC approximation remains subject to finite safiplds.
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Figure 6.15:0U system:(a) Plot similar to Fig. 6.14(a) only for the system noise variastcand
keeping the drif fixed to its true value. Again, the results of the GP regression represent th
exact marginal likelihood. (b) As Fig. 6.14(b), only the continuous line isthe G~1(3.0,2.0)
prior of the (hyper-) parameter.

Figures 6.15(a) and 6.15(b), show similar profile and posterior result$pbthe OU system
noise coefficienio?. It is apparent that for this parameter the LP method needs higher order
polynomials to match the results from the original VGPA. All methods locate the mininfitine o
profile at a smaller value than the true one. Furthermore, both methods seexidie drom the
true likelihood (blue circles), as the value of this parameter becomes morstdista the true
value that generated the data. The same bias effect can also be seaméng=i%(b), where the
LP method (5'th order) is compared with the HMC posterior sampling. Howd€MC methods
for sampling this parameter can be problematic due to the high dependeruiesibéhe system
noisec? and the states of the systeqn which results in slow rates of convergence (Roberts and
Stramer, 2001; Golightly and Wilkinson, 2006). Again the sagé(3.0,2.0) prior (continuous
green line), was used for both algorithms.

Similarly, the approximate posterior distributions and profile likelihoods, fangle reali-
sation of the DW system are presented for the diiit Figures 6.16(a) and 6.16(b) and for the
diffusion coefficiento? in Figures 6.17(a) and 6.17(b). Here there is no method to compute the
exact likelihood, hence the only comparison is between the profiles obtioradhe VGPA al-
gorithm against those obtained with the LP. For both paramétarslo?, the results are almost
identical with 3'rd order polynomials. Both estimates are biased, the driftrtsaaahigher value,
while the noise towards a smaller value, but these biases are consistenoséfséden in the HMC
posterior samples.

The profiles of the drift parameter vect@r= (o p B]" for the L3D system are shown in
Fig. 6.18(a) where the original VGPA algorithm (red circles) is plotted agahe LP approxi-

mation, with 2'nd order polynomials (green squares). The results are @Eimdastinguishable and
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Figure 6.16:DW system:(a) The profile approximate marginal likelihood of the drift parameter
8, keeping the system noise fixed to its true value, obtained by original VGPA algorithm (blue
circles) and the new LP extension with different order of polynomials.T{® histogram of the
posterior samples obtained using the HMC. The continuous green line shog&2, 0.5) prior

of the (hyper-) paramet&; whilst the red circles connected with the dot-dashed line represent the
approximate posterior distribution obtained by the discrete estimates of thediRlalgwith 3'rd

order polynomials. Both the HMC posterior sample histogram and the LP pstintages have
been normalized, such that the area they define sums to one.
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Figure 6.17:DW system:(a) Plot similar to Fig. 6.16(a) only for the system noise variasrcand
keeping the driff fixed to its true value. (b) As in Fig. 6.16(b), only the continuous line now is
the G~1(3.0,2.0) prior of the (hyper-) parameter®. Again the areas that both algorithms define

(HMC and LP) have been normalized. In both figures the vertical dasthedepresent the true
parameter value that generated the data.

the minimum values are well estimated for all parameters. Fig. 6.18(b), psesipnilar profiles
but for the diagonal elements of tBmatrix (i.e. 0%, 0§ ando?). Although both the VGPA and
the LP (3'rd order) exhibit identical behaviour unlike the drift paransetiee system noise profiles
are not as informative. Only the first dimensiog, ‘shows a clear minimum, although strongly
biased towards a smaller value (the true values are indicated with vertitedliises). The third
dimension Z, shows a weak minimum, i.e. there is quite flat region around the minimum value
and the second dimensioyi,'does not possess a minimum within the range of values explored.
Figure 6.19 (upper three panels), presents the posterior estimatesldDhdrift vector 6,

obtained from the HMC algorithm. The lower three panels present the xpgate posterior
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Figure 6.18:L3D system:(a) The profile approximate marginal likelihood for all three parameters
of the L3D drift vector. From left to right the profiles far, p and3 obtained from the original
VGPA algorithm (red circles) are compared against those obtained withRheith 2’'nd order
polynomials (green squares). (b) As before but for the system noiseach dimensioncg,

0§ ando?). Here the LP approximation uses 3'rd order polynomials. The verticshiethlines
indicate the true values of the parameters that generated the datasets.

distributions (discrete estimates) from the LP algorithm. Both algorithms usecathe prior
distributionspo(o) = G(20,0.5), po(p) = G(56,0.5) and po(B) = G(6,0.5). Nonetheless, the
comparison between the upper and lower panels is not straightforweadidgeethe approximate
posterior distributions obtained with the LP algorithm are conditional, in theesias the two
other drift parameters are kept fixed to their true values, whereas #terjgo distributions from
the HMC are obtained jointly (i.e. all the drift parameters are sampled simultaly¢ourhe
results from the LP method show weak biases towards smaller values in athgi@rs, which
is consistent with the HMC results, except thgdrift) parameter (first column) which the LP

approximation estimates more accurately.

6.3.4 Stochastic Lorenz '96 (40D)

In this section the application of the new LP variational approximation frameisaltustrated in
a forty dimensional system, namely the Lorenz 96 (L40D). An example okifsgem is given in
Figure 6.20(a), where all forty dimensions are shown for a time periochaitésT = [0, 10].

Figure 6.20(b), shows the approximate marginal meaand variances, of three selected
dimensions from thé.40D system. The mean paths are reasonably smooth and the variances
are broad enough to enclose the observations. Similar results were #soedbfor the other
dimensions of the system.

Finally the new approach was compared against the original VGPA algorithproduc-
ing conditional profiles for the forcing (drift) parame®r(see Figure 6.21(a)) and system noise
coefficientsX (see Figure 6.21(b), for the system noise in the the 20'th dimension). Bypih a

rithms produce smooth profiles, with the new approach identifying the minimuntligligétter.
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Figure 6.19:L3D system: The upper three panels, starting from left to right, present the joint
posterior HMC samples for the drift parametergp and3. The lower three panels, following the
same order, show the approximate posterior distributions (blue dots ¢edveith the dot-dashed
line) obtained from the LP algorithm with 2'nd order polynomials. The contisumes represent
the Gammaprior distributions that were used. Notice that the priors are very brbadll the
above results the system noise is assumed to be known and fixed to its trele valu
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Figure 6.20:Lorenz 40D:In (a) all forty dimensions (top to bottom) of a ten units time-window
(T =1[0,10]), of the stochastic Lorenz M0system, used for the experiments. (b) presents three
examples (3'rd, 19'th and 36’th dimension) of the marginal means (solehdnee) and variances
(shaded light green area) obtained with itfiealgorithm (3'rd order), at convergence. The crosses
indicate the noisy observations. Similar result were also acquired formemang dimensions.

However, more important is that these results were obtained by achieviiggificant reduc-

tion of 67.6% in optimisation space. For this example, with eight observations per time unit
(henced = (8 x 10) + 1 = 81) and third order polynomials (hens&o = 3), one needs to infer
Lpoly = 531,360 variables, comparing f&otal = 1,640,000, of the original VGPA.
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Figure 6.21:Lorenz 40D:In (a) the approximate marginal profile log likelihood of the drift pa-
rameterd, obtained with the origind¥ GPAalgorithm (left panel, red circles) is compared against
the one obtained with thieP algorithm with 3'rd order polynomials (right panel, blue diamonds).
In this example the system noise covariance maris fixed to its true value. (b) presents similar
results but for the conditional estimation of the system noise on the 20'th diomerassuming
the drift is known. Similar profiles were also generated for other dimensiaradl sub-plots the
vertical dashed lines represent the true values of the parametersnkaatgel the data.

6.4 Discussion

This chapter has introduced an alternative parametrisation of the VGPAthigo This new
approach uses local polynomials to approximate the variational parametamnsib; of the linear
drift approximation Eq. (4.7) to control the complexity of the algorithm andicedthe number
of variables need to be optimized. The LP algorithm is validated on a rangéeskdt systems
to test its convergence behaviour w.r.t. the original VGPA and showslentstability. In most
of the examples 3'rd order polynomials are required to match the originafithlgn although
the order is likely to increase as the observations become more sparse @.8mehbetween
observations increases).

Despite the notable reduction in optimized variables the LP approach dog®date similar
results in computational time. This is mostly because the new gradients of théunoson,
Equation (6.3), w.r.t. the coefficients of the polynomial approximations, @ computed
separately in each sub-interval where each polynomial is defined (gendix C). In the current
implementation priority was not given to the computational cost, hence a simfdéagrroach
was chosen. However, a parallel implementation in which the necessaliggfsaare computed
simultaneously is straightforward and could dramatically reduce the exedirtien especially
when treating long time windows.

The new LP algorithm can be used to construct, computationally cheapetdisgproxima-
tions to the posterior distribution of the (hyper-) parametéeend X (Section 4.5) and it shows
that it can match the results of the HMC sampling rather well, in the examples tested.

Another advantage with the LP framework is that different classes ohpaljals can be
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used. This approach was explored here using mostly orthogonal £lasg®lynomials, such
as Chebyshev and Legendre. However the results were not sigtiifidéferent in the systems
explored here and hence were omitted.

Although the application of this variational approach to the forty dimensioogz '96 sys-
tem (L40D) is very encouraging, there is still an open question on hove timethods can be
applied to very high dimensional models (such as those used for numesdea#thev prediction).
The LP approximation is a step towards that direction. In most of the exammssrted here
the computational resources were reduced by more than 60% (in termsrofzoqpy variables)
compared to the original VGPA. By imposing further assumptions on the @augsocess ap-
proximation (e.g. by defining a special class of linear drift functions) ibissible to control the
complexity of the posterior variational approximation and reduce the nuniberriables even

further.
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Chapter 7 COMPARISON WITH OTHER METHODS

7.1 Foreword

Chapter 6 introduced a new extension of the VGPA algorithm, by approxintagngriational pa-
rameterd\; andb; of the linear driftg, (X; ), with polynomials that were defined between each pair
of observations. The convergence properties of this approach, egfiect to the original VGPA,
were tested and it was proven (experimentally), that this new approagireduce similar results
to the original framework with a significant reduction in the number of optimiseiiies. In
addition the new approach showed beneficial characteristics when eslifmat@odel parameters
(discrete approximations to the posterior distributions).

Moreover, the original VGPA algorithm can also be used to provide paititnates of the
(hyper-) parameters, as shown in Chapter 4, within a gradient baSetatsn technique (pseu-
docode in Table 4.2). The same dual optimisation approach can also bevillsetie LP ap-
proximation framework, without any change in the implementation of the codee sire re-
parametrisation of the variational parametéssand by, affects only the smoothing algorithm
(see inner loop, Table 4.1), while leaving the outer loop unaffected.chntfae new approach is
more flexible, because it is possible to adjust the bound of the variatiomaithly to the marginal
likelihood, by tuning the order of the polynomial approximation.

The aim of this chapter is two fold(a) to describe briefly, a range of different methodolo-
gies that were implemented which solve the state and parameter estimation proldgnarimical
systems, from a Bayesian point of view, as reviewed in Chapter Al@no present a compre-
hensive study in comparing, empirically, the aforementioned estimation methtdshe new
LP approximation framework in terms of estimating the (hyper-) parameterses ttynamical

systems.

7.1.1 Chapter outline

The chapter begins with a brief description of different estimation methote/#éra implemented
to compare with the original VGPA and the LP extension on state and pararatteaton prob-
lems. Next, the methods are applied on a single example of the DW system higlgitfinein
different performances. However, the main contribution of this chapfeesented in Section 7.4,
where an extensive empirical study compares the LP method with a dual-amiK& weak con-
straint 4D-Var method in estimating the parameters of three dynamical systemslyrthe OU,

DW and L3D. The results are summarised and discussed in the final section.
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7.2 Methods implemented

This section briefly describes a range of estimation techniques that weremamled to assess
the original VGPA and the LP extension when estimating the systems statesyped )iparam-
eters on a range of dynamical systems. The methods have already bedndatt in Chapter 2,

therefore here a small description will be given along with some implementatioifsdeta

7.2.1 Ensemble Kalman filter / smoother

In general, ensemble filters are based on the intuition that it is easier taxappte a probability
distribution than it is to approximate a non-linear function. Therefore,rehkemethods use a
Monte Carlo approach and propagate forward in time a number of statesn@kenble) through
the exact model. This ensemble (typically of s€10?)), represents the state’s distribution and
its first two moments, the mean and the covariance, are typically used as the rgustettiatics.

The (predictive) mean and covariance are given by:

F_ 1 - n 71
my _NnZ]_Xt, ( : )
F 1 s n F n F\T
S :mnzl(xt—mt)(xt—mt) 5 (7.2)

whereN is the size of the ensemblg) € (1P represents the'th ensemble member (at discrete time
'ty and mf € OP andS| € OP*P are the ensemble mean and covariance respectively. The super-
scriptF indicates that these are tRdtered mean and covariance, in contrast with Bm@oothed

versions that will be introduced shortly.

observed

time

Figure 7.1: The initial ensemble of particles (or system states), is prop&gateard in time using
the exact modah(). Then in the light of observation each ensemble (forecast) member is dpdate
and a new initial ensemble is created for the next propagation.

Figure 7.1 shows an example of the ensemble Kalman filter in practice. Théltahgqro-

ceeds as follows: initially an ensemble of partic{ﬁzo}ﬁzl, is created by sampling from some
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prior distribution. Then each member of the ensemble is propagated fomvange through the
full non-linear modeim(-) to create thdorecastensemble (i.e{x{". ;}N_; = {m(x")}\_,). This
propagation is made until there is an observation. At observation tigh\eath ensemble member
is mapped through the general observation opefgtdr(or H if is assumed linear for simplicity)
to the observation space and updated given the obseryatidaeally, one could use an ensemble
of observations, so that each patrticle is updated by a different ais®rv This would ensure
the covariance structure of the ensemble is maintained in agreement with treatios’s error
covariancer (Burgers et al., 1998). However, generating an ensemble of oltieervavould be
too costly, therefore only a single measuremgsis used instead.

The ensemble Kalman smoother (EnKS), is a natural extension of the EriKinetead of
assimilating the observations sequentially up to time 't' it uses all available aigmrs within
the predefined time window. Two predominant approaches for smoothén@)athe two-filter
smoother andh) the forward-backwardsmoother. The first approach uses a linear combination
of two independent filters which run in forward and backward directiddewever a common
mistake with this approach is the use of the inverse forward dynamics to ob&almattkward
dynamical model, which does not in general lead to the correct resulagkdaal., 2006). On
the contrary, the second smoothing approach requires a separatabdéiker which recursively
computes corrections to the forward pass.

Many implementations of an EnKS have been introduced in the literature sksleasen and
van Leeuwen (1999); van Leeuwen (2001). Here the smoothing agipie based on the Rauch-
Tung-Striebel smoother (Rauch et al., 1965) (forward-backwarg) tgpd implementation details
can be found in Sarkka (2008).

7.2.2 Unscented Kalman filter / smoother / dual estimation

The unscented Kalman filter (UnKF) is in the same spirit as the ensemble Kalmarirtieemain
difference is that instead of maintaining a (possibly large) randomly gextkeasemble, it rather
chooses deterministically a set of typically & 2D + 1) particles (or sigma points), wheEeis

the dimensionality of the state vectar These sigma points capture essential information about
the first two moments of the distribution that they approximate. The predictiva arehvariance

are given by weighted sums of the sigma points as follows:

mF = Winean Xt » (7.3)
Nn—
N—1

S[F = ZOW?CO\O(th_mr)(th_mF)T ) (7-4)
n=
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wherevv'(“

mearcoy) € 0 defines thev'th weight. Assuming that the state vectqr(at time 't") has

meanm{ and covarianc&, the selection of sigma points for the next time instant 't+1’ is done

according to the following rule:

Xe=mg (7.5)
n

xt”—mf+< (D+>\)SF> ,n=1...,D, (7.6)
n—-D

x{‘:mf( (D+A)SF> n=D+1,...,2D, (7.7)

X?—&-l:f(X?)’n :0""52D7 (78)

where f(-) is the non-linear transformation (system dynamics) and the expon@nmt the right
hand side) indicates the n’th column of the square matrix. The weights for taasvend the
covariances need not be the same. These are selected (usually) calgtdhe beginning of the

estimation procedure as follows:

Wneay =M (D+A) (7.9)
Wy =M/ (D+N)+(1-a®+p), (7.10)
Wineancoy = 1/(2(D+2A)) ,n =1,...,2D ,with (7.11)
Z""?mearhcov) =1, (7.12)

whereA = a?(D +k) — D, is a scaling parametex,c [ determines the spread of the sigma points
around the mear € [J is a secondary scaling parameter (usually set to zeropand is used to
incorporate prior knowledge of the distributionf For further details concerning on the choice
of the sigma points and the tuning of the weights we refer to van der Merv@g)20

As discussed in Chapter 2, this method utilizes a technique known asrikeénted transfor-
matiort, to estimate the states of the dynamical system considered and was primaatjuiced,
as an alternative to the extended Kalman filter (EKF), to address its lineani$iatitations. The
UnKF has been extended to model parameter estimation problems in Wan addn/sierwe
(2000) and Wan et al. (2000). Two approaches were taf@raugmenting the state vector with
the model parameters and then applying a single filter recursion to estimatef bogmgointly
and(b) using two separate filters, one to estimate the system states, given the estiraates for
the parameters, and one to estimate the model parameters given the dateeestimates. In the
latter approach the two filters are run in parallel and are known aduhlilter.

In this work, for estimating the states of a system a version of an unsceatetK filter and
smoother were implemented as proposed in van der Merwe and Wan (2@DEgekka (2008),
respectively. These papers not only describe the proposed algotiilinadso provide detailed

pseudocode which guided the implementation.
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For the estimation of the model parameters a dual unscented Kalman filtetJokig), sim-
ilar to the one used by Gove and Hollinger (2006) to assimilate&Ci@texchange between the
surface and the atmosphere, is implemented. Again for more implementation detadader is

referred to van der Merwe and Wan (2001).

7.2.3 Hybrid Monte Carlo

The HMC algorithm Duane et al. (1987), is a Markov chain Monte Carlo M} technique
that combines Hamiltonian molecular dynamics with the Metropolis-Hastings atcrgptt cri-
terion to sample from complex distributions. In this setting the HMC algorithm mepa new
configuration (or a new sample path) by sampling from the posterior distribEtijo (4.3).

The algorithm begins with an initial (discrete time) sample path: {x,j(}E:O, wherej >0 is
the step in the iterative procedure and proposes a new sample/path {xﬂfl}E:O. This is done
by simulating, forward in time, a fictitious time deterministic system:

]

dx
ot Px | (7.13)
dt axii ' '

where px ~ A (0,1) are the fictiious momentum variables assigned to each state vaxigble

resulting in a finite size random vectpr= {pk}{;‘:o. The Hamiltonian of the systerH (x,p) is:
H(X,p) = Epot + Exin , (7.15)

whereEpot = —In ppost(Xon|Y1k), is the potential energy given by the negative log-posterior dis-
tribution of the target density (see Equation 4.3), associated with the dynafthessystem (SDE)
including the observations artf, = %ppT is the kinetic energy.

In practice, the deterministic Equations (7.13) and (7.14), are discretitewme stet

and numerically solved with leapfrogintegration scheme:

p(t+0.5¢) = p(1) — 0.5e0xL(X(1)) , (7.16)
X(T+¢€) =x(1)+p(1+0.5¢) , (7.17)
p(t+¢) =p(t+0.5¢) — 0.5exL(x(T+¢€)), (7.18)

_07(x.p)

wheree is the artificial step size andyL(x) = . For full details of the algorithm concern-

0x

ing ergodicity of the chain and detailed balanced, see Neal (1996).

Finally, once the chain has converged to its stationary distribution, a largeamoh{@iscre-

100



Chapter 7 COMPARISON WITH OTHER METHODS

tised) sample paths is collected and the mean and covariance is computed as:

1 N
m?:N S X (7.19)
n=1
1 i n S\ /N S\T
StS:N_lz(Xt_mt)(Xt_mt) ) (7.20)
n=1

wherem? € 0P andSP € 0P*P are respectively thEmoothednean and covariance at time 't'.

7.2.4 Full weak constraint 4D-Var

As described earlier (Chapter 2), thB-Var method minimizes a cost function that measures the
distance of the most probable trajectory from the observations, withirdafoimed time window of
inference. In most operational implementations the model equations areegbgperfect (strong
constraint), or that the errors are sufficiently small to be ignored. In thikwhe model is as-
sumed to be known only approximately, hence allowing for model error td iextbe problem
formulation. This formulation is known asveak constraint 4D-Var

Tremolet (2006), describes different variations of this algorithm, with the cdoser to our
approach denoted in his work, ad¥4-Vary”, where the subscriptX” denotes the control variable
in the optimisation procedure. In the 4D-Var method implemented here sincg (eNscrete in
time) system statgy is a control variable is also referred dalt weak constraint 4D-Var

Although the original 4D-Var method is well studied for estimating the states gk,
not much work has been done in estimating model parameters. Navon {11@®¥#es a useful
review for parameter estimation, in the context of meteorology and ocesgpiogr Here a dual
approach is followed, similar to the LP approximation algorithm. The estimation fvankes
based on an outer / inner optimisation loop. The inner loop estimates the mioabf@drajectory,
given the current estimates for the drift and diffusion parameters d@wkguently the outer loop,
conditioning on the most probable trajectory, updates the estimates of thegtara by taking a

gradient descent step. The cost function to optimize is given by:
Jcost = Jxo +Jf + Jobs"‘ Jhp+CE ; (7-21)

whereJ,,, is the contribution of the prior over the initial statg_o, Js is the influence of the
model equations (drift function)l,ns is the contribution of the observationk,, comes from the
priors over the (hyper-) parameters abg is a constant value that depends on the system noise
coefficientX. In practice, one needs to compute the gradients of the cost function wjtbateto

the control variables (i.elJx,, Jeost), for estimating the most probable trajectory (inner loop) and
then the gradients of the cost function with respect to the (hyper-) péesn@e. [gJ.ost and

OsJeost), for updating their values in the outer optimization loop.
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Constructing the weak constraint 4D-Var cost function

In a Bayesian framework, if one is interested in estimating the system stateswvell as the
model parameters®, then one is interested in the joint posterior distribution of the states and the
parameters, given the observations (pé&, ®ly)). Via Bayes rule this posterior is given by:
P(y[X,®)p(x|®)p(©)

(v) ’

p(y[x,®)p(x|®)p(©) , (7.22)

p(x,®ly) =

°

wherep(y|x, ®) is the likelihood of the observations given the current state of the systdithan
(hyper-) parameterg(x|®) is the prior distribution over the system states given the the (hyper-
) parametersp(®) is the prior over the (hyper-) parameters afi#) is the marginal likelihood.
Having discretise the continuous time sample dathto <t <t }, using the Euler-Maruyama
method (Kloeden and Platen, 1999), the next step is to compute the followirtgpsterior

distribution of the states with the desired (hyper-) parameters:

pP(XoN, ©ly1x) O p(y1k[Xon, ®) p(Xon|©®) p(©) , (7.23)
~——
likelihood prior prior

whereN = |tp — t¢|/dt, is the total number of discrete state variables Endenotes the total

number of observations.

Likelihood of the observations

Assuming that the measurements are i.i.d. with zero mean and covarianceRy#texdikelihood

expression for the observations yields:

K
p(Y1k|XoN,®) = |_| N (yk —*|R) ,
K

(2r)~P/2|R| 2 exp{ ~0.5(yk — X, ) 'R (yk— Xy} -
1

= [tz PRy 2] expi - osz e—x) R Ay—x)} . (7.24)

=
[l

—

where the dependency & comes through the sample patfiy and all the assumptions about
the state and observation vector dimensions are the same as introduced tier @hdp addition
the observationgy are assumed direct measurements of the sigtetherefore the observation

operatorh(-) is omitted.

Iwithin the current frameworl® includes all the parameters in the drift and the system noise covariartdg ma
(i.,e.®={0,3}).
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Prior distribution over the states

Using the assumption that the process is Markovian, the prior distributioe stdtes is given by:

pXon[®) = pl) [ POt (7.29
— p(o) ﬁ N (X 2| Xk -+ F(Xic; 0)t, 2t | (7.26)
:pu@[gm—wﬂzarﬂﬂNx
Eiém{—oa&mﬂ—fumm&fWE&yiﬁwﬂfiamm&n, (7.27)

= p(Xo) [(2n)—D/2|25t\—1/2] .

N-1

B Xkl ¢ . pvy Tl
exp{ 0.56tkzo( 5 f(x;0)) X(

OXk 1
ot

—f(x:6))}, (7.28)

wheredxy 1 = Xk11 — Xk anddt =tx. 1 —tx. The initial stateg, is chosen to be normally distributed
such ag ~ N (70, Ap). Notice also the unusual scaling of the system noise coeffidientith
the time incremendt. This comes from the discrete version of the SDE (Equation 6.6), where the

scaling is necessary to achieve the limit of the diffusion procest-as0 (see Chapter 2).

Prior distribution over the parameters

For this prior density it is assumed that the parameters have no depersdegtgieen them, hence

their joint density can be expressed as the product of their marginatidens

p(®)=p(6,%),
=p(6)p(%), (7.29)

wherep(0) is the prior marginal distribution of the drift parameters go&) is the same but for
the system noise coefficient. The derivations of these expressionstdtether extended because
these densities can be parametrized with any distribution of choice. In thi&@#Betting the same

prior distributions as in the HMC and the variational framework are usedt i§ip(0) = G(a, )

andp(X) = G 1(ab).

Jeost - Total cost function

It is common practice in optimisation when one wants to find the minimum (or maximum), of
a cost function to look for the minimum (or maximum) of the logarithm of the costtfan

(due to the monotonicity of the logarithmic function). Hence instead of maximizingdk&erior
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p(Xo:n, ®|y1k ), ONE can minimize the negativepxo.n, ©|y1:k ), which has some nice character-

istics. Therefore, the complete cost function is given by:

N-1 T
Joost=— Inp(xo) + 0.53t <6Xk+l—f(Xk;0)> 21<6Xk+l—f(Xk;9)>

)
N

K

+ 05 (ye—x) TR H(y—x,) —Inp(6) — In p(=)
k=1

Jnp
Jobs

+ 05K In|R|+N In|Xét|+K N D In(2m) ), (7.30)
Cs
whereK > 0 is the total number of observatiori$,> 0 is the number of the discrete time states

andD > 0 is dimensions of the system states and observations. It is worth noticingnifiiee
most implementations of weak constraint 4D-Var, where the @is omitted (because in state
estimation this constant vanishes), in this setting it is important to include it if onsw@perform

the estimation of the system noiXeproperly.

7.3 State estimation

This section compares the estimation methods described in Section 7.2, on hyicealisa-
tion. This is done for illustration purposes to demonstrate the differenitseshtained with each
algorithm. The time window i = [0, 8] with discretisation stept = 0.01. The drift and diffu-
sion parameters are set@e= 1, ando? = 0.8 andK = 8 observations are measured (one per time
unit) with noise varianc® = 0.04. For simplicity, all filtering and smoothing algorithms (except
the HMC), start with identical fixed initial values for the marginal means amidnees fng = Xo
andSy=0.1).

Figures 7.2(a) and 7.2(b) present the results of the ensemble Kalmanriidteneother re-
spectively, with 5000 ensemble members. The reason for choosing seiggimble size is to
provide a smooth solution. As expected, in the absence of observatioEsltieincreases the
variance fast and only at observation times it reduces it rapidly. TheSEid€s better, producing
a smoother approximation to the mean path and does not overestimate theintyckki the
EnKF. Observe that both algorithms at the final time are identical, as shoexileeted. Never-
theless, both algorithms perform poorly in tracking the transition between theéls. Ensemble
Kalman methods provide an effective means to approximate the evolution ofdbalylity dis-
tributions for non-linear dynamics, however as discussed in Miller et 8B, problems still
remain in properly tracking transitions in systems with multi-modal statistics.

Similar remarks can be made for Figures 7.3(a) and 7.3(b), where thitgsrisem the un-

scented methods are illustrated. In general the estimation of the varianceescamservative,
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t t
(a) Ensemble Kalman filter (b) Ensemble Kalman smoother

Figure 7.2: Application of the ensemble Kalman filter (a) and smoother (b) to ke slataset (8
noisy observations) of a typical DW realisation. Both algorithms u88® ensemble members to
approximate the filtering and smoothing distribution respectively. Continssagdth) blue lines
indicates the mean paths and the shaded areas the variances. In botheptaig thistory that
generated the observed data is plotted on top of the predictive results (blagh trajectory).

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

t t
(a) Unscented Kalman filter (b) Unscented Kalman smoother

Figure 7.3: (a) and (b), same as 7.2(a) and 7.2(b), but with the undcagtaithms.

compared to their ensemble counterparts (Figs. 7.2(a) and 7.2(b)) brat the transition time is

the variance overestimated.

x(t)
x(t)

t t
(@) GPr - Squared Exponential kernel (b) GPr - Ornstein-Uhlenbeck kernel

Figure 7.4. Gaussian process regression (GPr) smoothing. For (sjulaeed exponential (SE)
kernel is used, whereas for (b) the stationary OU kernel. The dasabet same as Fig. 7.3(a).

Although not described thoroughly in this thesis, Gaussian Proceses$emt (GPR) smooth-

ing is a common tool in machine learning to perform inference in unobsemed Rasmussen
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and Williams (2006), provide a detailed study on this subject and also givermepkation de-
tails. Here, the GPR is used with two different kernels, these are the&@hEaponential kernel
K(x,Xs) = exp{—0.5|x — xs|°} and the non-stationary OU kernel Eq. (3.7). Both Figures 7.4(a)
and 7.4(b), show that the GPR produce very smooth results for the xam@te mean paths.
Clearly both of the kernels used are not appropriate to perform irderfar this system. Note
also how the GPR using the OU kernel overestimates the posterior covaridioaever, this is
not a surprising result as GPR does not assume any dynamics in théyinglsystem that gen-
erated the observed data. The only case with the GPR can be used tanpexgrct inference

in SDEs is the OU system (as shown in Chapter 3), where the transition pigeis loy the OU

kernel.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

t t
(a) VGPA algorithm (b) Markov chain Monte Carlo

Figure 7.5: Original VGPA (a) vs HMC sampling (b). The HMC for this examgleonsidered as
the reference solution.

The last two figures of this section (Figs. 7.5(a) and 7.5(b)), providedhelts from the
original version of the VGPA algorithm in contrast with the HMC posterior damgpalgorithm.
For this example, the HMC is assumed to provide the reference solution. @ennjoaall the
above methods, the VGPA seems to provide a very good approximation tostezipoprocess.
The variance is slightly underestimated, compared to the HMC results, but Hrepath matches
the HMC mean path rather well and the transition is tracked accurately. Aonusbdifference
with the HMC is at the end of the time window (after the last observation) wherengan paths
start to deviate and the variance is strongly underestimated. This is explairikd fact that the
linear approximation that is imposed by the VGPA, in the absence of obserwat@stricts the
algorithm and prevents it from “seeing” the other well of the system. Th@A/@&cuses on the
correct posterior mode as long as there are available observationshendive observations stop
it remains in the last visited mode keeping the variance appropriately fixedheOcontrary the
HMC in the absence of observations becomes “confused” and is uasusdich mode to stay,
therefore it returns to the true mean of the equilibrium process (which ®sttstem is¢; = 0,

see Figure 3.2(a)) and its variance diffuses in both wells.
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7.4 Parameter estimation

This section presents an empirical comparison of the marginal and joint estinedittbe drift

0 and diffusion coefficien®, using the UnKF, 4D-Var and LP methodologies in two distinct
asymptotic regimes(a) infill asymptotics where the observations are sampled more and more
densely, within a fixed time domain (i.8lyps — %, while T = [to,t¢]) and(b) increasing domain
asymptoticswhere the observation density remains fixed, whilst the time window of inéere

increases (i.eNgps = const. andl' — o).

7.4.1 Infill asymptotic behaviour

Before proceeding a few issues need to be clarified concerning therpation of the results. As
mentioned earlier the variational LP approximation method and the weak dahgaVar based
algorithm, provide point estimates of the (hyper-) parameters, in a graokesed optimisation
framework. The dual unscented Kalman filter approach provides méamagss (of the param-
eters), as a function of time. To make the results of the dual UnKF more cabipawith those
from the other two methods the collection of the mean estimates is treated as alffittista-
bution and then estimates of its moments, such as the mean value (Hansen land,F2007),
are calculated. An example of this procedure is shown in Figure 7.6, wiherdual UnKF is
applied to estimate the drift parameter of the DW system, on a single data set.efsralgule,
only the second half of the time period is used to estimate the mean values. Thelritithat
in these controlled experimentthere is no need to average over the whole time window because
the initial estimated value is wrong, hence the filter is allowed to converge diawalue. The
second remark has to do with the quantities that are plotted. In order to eravitbre general
analysis thirty different observation noise realisations were createdafdn observation density.
The results are presented as summary statistics, illustrated using the 2%ttipbthedian value)
and the 75'th percentile of the estimated values from each algorithm.

The conditiond drift estimation of the OU and DW systems is shown in Figures 7.7(a) and
7.7(b) respectively. The results for the OU system show that the LRo=ippettion has a small
increasing trend and settles to a higher value, compared with 4D-Var, glittbis higher value
is also seen in the HMC posterior estimates of this parameter (Fig. 6.14(bd)baik algorithms
narrow the range of estimates, as the observation density increasesdtheaes are closer to the

median value), as one would expect. On the other hand the results fromittelased algorithm,

IHere it is implied that the true values that generated the data are knowrrizapcalso the initial values of the

estimation process are deliberately wrong but close to the true one.
2This term is used to signify that all the other parameters, such as the systeobservation noiseE(andR),

are assumed known and fixed to their true values.
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~prrzazEaane o

mean value: < 6(t)>

Figure 7.6: An example of mapping the results from the application of the dudFllgorithm
applied to a single trajectory, estimating the DW drift parameter, to a point estimata(value).
The blue circles indicate the ensemble mean estimates as a function of time, whidetihecus
red line is the mean value of these estimates over the period used for agerddia vertical
dashed line marks the beginning of the time window where the average takes pla

show a more steep trend and only when the system is highly observed @&sithates close to
the true generating value. Here, as in all the experiments that follow, adl #igerithms were
initialized with the same value for the parameter(s) that were estimated.

LP4 4D-Var UnKf LP3 4D-Var UnKf
22 2. 1.1 1.1 1.1

J* i ] 1T u
“HPH bE ik M ;;Hh, Ht ”j_’_J_Hy_*_f_*_ T
=, . . 0 R | TR O T

SR PR I wﬁw

0.85 F 0.85 i 0.85

'4048121620 1'4048121620 1HO48121620 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
Nobs Nobs Nobs

obs

obs obs
(a) Bpy estimation (b) Bpw estimation

Figure 7.7: Drift (conditional) estimation(a) Presents the summary statistics (25'th, 50'th and
75'th percentiles) after estimating the drift parameidrom thirty different realizations, of the
observation noise, on the OU system keeping the system noise coefiéidned to its true
value. The left panel (blue) presents the results fromLRealgorithm, while the middle (red)
and the right (green) the results from tffall) weak-constrained 4D-Vaand thedual UnKF
respectively. In (b) the same estimation experiment is repeated but fordHfesent realizations,

of the observation noise, of the DW system. All estimation results are presasiteinctions of
increasing observation density.

For the DW system the algorithms were more stable, in the sense that theygsivea
stable value and there are no major trends as in the OU case. The resul@lifroethods are
biased either towards higher values (LP and 4D-Var), or lower valueKFk). Once again the LP
algorithm bias matches the HMC posterior estimates as shown in Fig. 6.16(bjuglthhe results

from the dual UnKF seem inferior compared to the other two algorithms, itldthze recalled that
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this is a filter estimation, which means that it “sees” the observations sequermihyup to the
current time and does not take into account the future observations.

Figures 7.8(a) and 7.8(b), present the results of estimating the systeenoipisf the OU
and DW systems. This shows only the estimates obtained from the LP approximaibod.
The other methods, although applied to the same datasets, were unabldde gond estimates,
hence were omitted. It is obvious that the estimation for the OU system is stdfile,far the
DW the process needs to be well observed (&lg,s > 10), before converging to a value. Both

plots show consistency with the HMC posterior estimates presented in Chapter 6

12 T T T T T T T T T T 1

S K
n A ]*IHH

0.5f

0'40 2 4 6 8 10 12 14 16 18 20 22 0O 2 4 6 8 10 12 14 16 18 20 22

Nobs Nobs
(a) a3, estimation (b) o3,y estimation

Figure 7.8: Noise (conditional) estimatiorn(a) shows the conditional estimation of the system
noise coefficient?, keepingg at its true value. The plot presents the 50'th percentile (red circles)
and the 25'th to 75'th percentiles (blue vertical lines). (b) repeats the saperiment but for
the DW system. All results were obtained with thie method (3'rd order) and are presented as
functions of increasing observation density.

The experiments on the uni-variate systems conclude with the joint estimationariftiza-
rameter® and the system noise coefficiemt. Figures 7.9(a) and 7.9(b), summarize the results
attained from the LP approximation method. The drift estimation for the OU systieows a
significant bias to smaller values (compared with the conditional estimation o7 Fi@)), where
the bias was towards a higher value. These estimates become more caitlemibbservation
density increases (smaller error bars). Meanwhile, the estimation of theiffdisi@h noise is
consistent with the conditional outcomes. Unlike the OU system, the DW shavesstent esti-
mation for the drift parameter and a surprising improvement of the systera asisnation. In
these plots, in contrast to the conditional ones, there cannot be a difeience to the posterior
HMC estimates, because here the parameters are estimated simultaneouslthevigkults of
the HMC, in Chapter 6, were obtained by fixing the parameters that arestioia¢ed to their true
values.

Next the conditional estimation of the drift vecty of the L3D system is considered (Figure
7.10). It is clear that in this example the 4D-Var estimation method (middle columridyimes

better and produces more stable results. The LP algorithm when tested with4odservations
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Figure 7.9: Joint estimation:In (a) the drift and diffusion coefficient, of the OU system, are
estimated jointly. The left upper panel shows the result®favhile the left lower panel foo?.
The results are summaries (25'th, 50'th and 75'th percentiles) from thiffigreint observation
realizations. (b) shows the same joint estimation but for the DW system. Theupgler panel
shows the results fd@, while the right lower panel foo?. All results were obtained with thieP
method (3'rd order) and are presented as functions of increasimg\vattion density.

per time unit seems to be under-sampled and the state estimation (inner loop pfithisation
procedure) does not actually converge to the optimal posterior prothssefore, the parameter
estimates are no longer reliable. When the process is observed morerilgde.g.Nops > 8), it
produces more stable results. The dual UnKF estimation results are reliihlée exception of
the p parameter (third column, second row), which is very biased with spassnadiions. How-
ever, all parameters asymptotically converge close to the true values, alssiwation density
increases.

Similar to the univariate systems, the conditional estimation of the system nof§ieieae:,
was feasible only with the variational LP approximation algorithm. Becauseotlaiance matrix
is assumed diagonal (see Eg. 4.1), one needs to estimate only the thresatimmoponents,
which correspond to the noise added in each dimension of the L3D dynaetjoations (see
Eq. 3.9). Figure 7.11 suggests that to estimate this very important parametea®e have
dense observations. For the L3D system all three dimensions are ethseBomponents?
anda? converge close to the true values roughly after 16 observations, per titevhile the
05 parameter converges to a higher value. These results are in agreeithetiterapproximate
marginal profiles produced earlier (Fig. 6.18(b)).

To conclude with thanfill asymptoticssection, the application of the newly proposed LP
approximation framework is demonstrated to the joint estimation of the drift ahdsdih matrix
of the L3D system. In total six (hyper-) parametess §, B, o3, 07 anda?), are estimated as
shown in Figure 7.12. The asymptotic behaviour is similar to that observed esignating the
parameters conditionally, which gives some level of confidence that toethly is stable. The

general message is that good estimates can be achieved when the sysédrobisevved.

110



Chapter 7 COMPARISON WITH OTHER METHODS

LP3 4D-Var UnKf
11 ’ 11 11
)
10F=====g@¢F===- 10'"*'*'11'; w37 1Op========-- -
® P I B
L o9 f ¢ : 9 ‘! : ' v
8
7 7 7
2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
29 29 34
28---, -------- e 28---, -------- e 32 +Y
Q . aiemaNgyg ppEEE mEgn 30 v :
27 * : 27 : 8= = mmm-- YYYwy
26 26 26
2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
3 . 3 3
------ .ol - - E-E - = = > b=
25[ 4@ ' o5 MEE ' Nhaddiads
A
2 * t : 2 : : 2
1.5 1.5 1.5
2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
Nobs Nobs Nobs

Figure 7.10:Drift (conditional) estimationThe infill asymptotic results for thie3D drift param-
eter vecto@. The summary results when seen horizontally compare the same drift paréuorete
with different estimation methods, while vertically the results are presentéddd@ame estima-
tion method but for all three parameters p andp). The methods tested, from left to right are
the LP algorithm (3'rd order), thé€full) weak-constraint 4D-Vaand thedual UnKF accordingly.

In all sub-plots the horizontal dashed lines indicate the true values of ifigo@rameters that
generated the observed trajectories. Where possiblg-txéswas kept the same for all plots to
make comparison easier. All algorithms were tested on the same thirty diffeedisations of the
observation noise.
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Figure 7.11:Noise (conditional) estimatiorBummary results (25'th, 50'th and 75'th percentiles)
from thirty different observation realizations, of th8D system, when estimating conditionally
the system noise coefficient mat®. The results were obtained using the algorithm (3'rd
order) and are presented as functions of increasing observatiaitydemhe estimation of the
noise is presented separately in each dimensigrandz from left panel to right accordingly.
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Figure 7.12: Joint estimation: The summary results (25'th, 50'th and 75’th percentiles) when
estimating jointly the drift parameters p and3 (upper three panels), and the system noise co-
efficientso?, o7 ando? (lower three panels), of the3D system. The same dataset of the thirty

different realisations of the observation noise is used, as in the presxpeasiments.

7.4.2 Increasing domain asymptotic behaviour

This section discusses another important asymptotic property; when teevatisndensityre-
mains fixed, but the duration that an event (or the random processké&vadl, increases. To
explore this behaviour new extended sample paths were created for alyrlenical systems
considered in our previous simulations and then the total time-window was splgrnter, but
equal, time intervals.

To be more precise, an example is given on the DW system. Figure 7.18nfwessample
path (or history) of the DW system with time-windoWa = [0,50. The next step consists
of measuring the history with fixed observation density (eNgps = 2). Then the total time-
window is divided in five sub-domains, of ten time units and create five time-wiad®;o =
[0,10], T20=[0,20], - - -, Tso = [0,50]), including the observations from the previous steps. Finally,
the estimation methods are applied on each sub-interval, by introducing thebsamations
incrementally.

Figures 7.14(a) and 7.14(b), show the results of the conditional dtifhason for the OU
and the DW systems respectively, as the time-window of inference insredse in theinfill
asymptoticsimulations, thirty different realizations of the observation noise werergtand

the results are presented as summary statistics of the estimation outcomeseBhreawmber of
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Figure 7.13: A typical example of BW sample path with an extended time-window that is used
for theincreasing domairmasymptotic behaviour of the algorithms. The vertical dotted lines split
the total time window in five time domains starting frofy = [0, 10] to Tsp = [0,50], which are
presented to the estimation methods incrementally.

simulations performed are fewer than in the previous case all the resufisesaented as boxplots
which provide a richer presentation. It is apparent that in this type ohpsytic convergence, the
LP approximation algorithm is remarkably stable with results that are very tdase ones that
generated the data. The drop under the true value (as indicated by thentairdashed line), in
the DW example (Fig. 7.14(b)), for the third time window (i.8o = [0,30]), can be explained
by the fact that the transition between the two wells happens between thet@4£6ith time
units, as shown in Figure 7.13. However, when the time-window increasthef the algorithm
recovers back to the previous value. For the same example, the 4D-Vaychsgdints with a higher
estimated value but after the transition occurs it settles to a lower value. A sireilaviour can
also be observed for the UnKF results, were the method approachesi¢heatue, although it
becomes less confident (larger error bars), which was somewhgiecied behaviour.

The conditionally estimated diffusion coefficients are presented in Figut&¢aj, for the OU
and 7.15(b), for the DW. Here only the LP approximation method was useid, the previous
section. The estimates, for both examples, are stable and improve as the tinoe/ivinteases.
Especially for the DW, the results get closer to the true value after the tranis@ebeen observed
(Ts0). In a similar way, the results for the joint estimation of the déifand diffusiona?, are
consistent and presented in Figures 7.16(a) and 7.16(b).

This section concludes with the results of the L3D system. Figure 7.17 npsg¢be summaries
of the jointly estimated drift parameter vectbe= [0 p B] ', conditional on the system noise matrix
3 set to its true value, from all three estimation methods. All algorithms are stathlpraduce
good results, with the 4D-Var having the smallest bias. Once again, thedBad UnKF methods

failed to provide stable results when estimating the system noise coefficients bnly results
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Figure 7.14: Drift (conditional) estimation(a) Presents the summary statistics (boxplots) after
estimating the drift paramet®rfrom thirty different realizations, of the observation noise, on the
OU system keeping the system noise coeffici@htixed to its true value. The left panel presents
the results from th&P algorithm, while the middle and the right the results from (tud) weak-
constrained 4D-Valand thedual UnKF respectively. In (b) we repeat the same estimation ex-
periment but for thirty different realizations, of the observation noisehe DW system. All
estimation results are presented as functions of increasing time domain,kéepiobservation
density fixed.
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Figure 7.15:Noise (conditional) estimatior{(a) shows the conditional estimation of the system
noise coefficient?, keeping® to its true value. The plot presents boxplots (5'th, 25'th, 50'th,
75'th and 95'th percentiles), from thirty different realizations, of theasation noise, of the OU
system. (b) repeats the same experiment but for the DW system. All resuésobined with
the LP method (3'rd order) and are presented as functions of increasing timaidpkeeping the
observation density fixed.

from the LP method are shown. The joint estimation of the noise coefficEnhts? and o?,
conditional on the drift vectof being fixed to it true value, are illustrated at Figure 7.18, where
it was necessary to observe with quite high densilyp{= 18). In addition, the joint estimation
of all the (hyper-) parameters, of the L3D system, as the time-window ofeinéerincreases, is
shown in Figure 7.19. The results are in accordance with the conditioiialagss, although the

observation density was set to ten observations, per time uniiNgse= 10).
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Figure 7.16: Joint estimation:In (a) the drift and diffusion coefficient, of the OU system, are
estimated jointly. The left upper panel shows the result®favhile the left lower panel foo?.
The boxplots present summaries from thirty different observation réializa (b) shows the same
joint estimation but for the DW system. The right upper panel shows thégdeu®, while the
right lower panel foro?. All results were obtained with theP method (3'rd order) and fixed
observation density to two per time unNdgs = 2).
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Figure 7.17:Drift (conditional) estimationThis plot compares the increasing domain asymptotic
results (fixed observation density), when estimatinglLiBe drift parameter vectof. The sum-
mary results when seen horizontally compare the same drift parameter wétedifestimation
methods, while vertically the results are presented for the same estimation mathat taree
parametersd, p and). The methods tested, from left to right are tte algorithm (3'rd order),

the (full) weak-constrained 4D-Vaand thedual UnKF accordingly. In all sub-plots the horizon-

tal dashed lines indicate the true values of the drift parameters that ggghérea history sample.
Where possible thg-axiswas kept the same for all plots comparing the same parameter to make
the comparison easier.

7.5 Discussion

The methods implemented and presented here, cover all the main categdridsathaith the

inference problem from a Bayesian perspective (Chapter 2). llogng the infill and increasing
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Figure 7.18:Noise (conditional) estimatiorSummary results (boxplots) when estimating jointly
the noise coefficients?, 05, ando?, of theL3D system. The results were obtained with tife
method (3'rd order) and presented as functions of increasing time dokea&iping the observation
density fixed Nops = 18).
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Figure 7.19:Joint estimation.Summary results (boxplots) when estimating jointly the drift pa-
rameterss, p and (upper three panels), and the system noise coeffic'cﬁ',\tei anda? (lower
three panels), of the3D system. The results were obtained with ttié method (3'rd order)
and are presented as functions of increasing time domain, keeping theailmsedensity fixed
(Nobs: 10)-

domain behaviour when estimating the parameters of the OU, DW and L3D, albdsesinow
biases and the response was different over the range of the systems.

The methods are largely comparable with the dual UnKF being less stabldigtntty snore
biased. LP and weak constraint 4D-Var are more comparable (sinceioeile smoothing solu-

tions to the inference problem) but there was no clear preference pecéis algorithm, exceptin
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the case of estimating the system noise paramé&iels this case both 4D-Var and UnKF failed
to provide satisfactory results, giving the LP a clear advantage. A plartidifficult case is the
noise estimation of the L3D system where the process has to be obserydtegeently. Yet it
is not clear whether this relates to the chaotic behaviour of the system tla¢hierability of the
variational algorithm to identify these parameters.

Comparing the results on the two asymptotic regimes revealsnitraasing domains more
promising tharinfill and suggests that in order to identify a model parameter, is better to observe
an event constantly over a large period of time, rather than observe itdensely in a short pe-
riod of time. It should be emphasised that the results shown for thesdrarpes are obtained by
applying the estimation algorithms on many realisations of the observation nmis@fingle tra-
jectory of each dynamical system. The way that these conclusions tiseéoaother trajectories
has yet to be answered.

An interesting question that is raised is how the parameter estimates aredafftfoteprocess
is not observed uniformly (at equidistant times), as was the case hergther with different
densities over different periods of time. An example, on a DW trajectory)avoe the estimation
of the system nois& by having more frequent observations around the transition time than the

rest of the sample path.
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Chapter 8 CONCLUSIONS

“As for me, all | know is that | know nothirig.
— Socrates, Greek philosopher.

8.1 Foreword

This thesis has developed two new algorithms for approximate inferencetiallyaobserved dif-
fusion processes, based on extending the recently proposed vai@eunssian process algorithm
(VGPA), in terms of radial basis functions (RBF) and local polynomial)(@&pproximations. Both
extensions were tested on artificial datasets and are shown to convengeaiaginal VGPA al-
gorithm, given a sufficient number of basis functions or order of therjotyals, respectively.
Although simple in concept, the LP method is a natural extension of the RBBxpyation and
from a theoretical point of view possess a more appropriate approxinztibe variational pa-
rametersA; andb;. This was shown in practice where the number of optimised variables was
reduced even further than the RBF extension while retaining an excetipndxamation of the
aforementioned parameters. This chapter concludes the thesis by sumgrsoisie key points of
each chapter. At the end some further research directions are didalesg with the limitations

of the proposed algorithms.

8.2 Summary

Stochastic differential equations have gained increasing attention theetzdeasb, applied to the
modelling of real world systems with many applications in physics, financéroemaental sci-
ences, engineering and systems biology. Typically they describe the t@negolution of a state
vector of a dynamical system based on the (assumed) physical lawsregirsystem, including
a driving noise process. The noise process can be thought of irusaniays. It often repre-
sents processes not included in the model, but present in the real sySteapter 1, describes
briefly the difference between modelling a system with ordinary and stochiferential equa-
tions. Moreover the rational for adopting a Bayesian paradigm for theloged algorithms is
also highlighted.

The important class of diffusion processes is reviewed in Chapter 2hwhitbe seen as solu-
tions of the aforementioned SDEs. Some basic definitions on stochastisgpee@e given with a
few fairly simple examples and then the inference problem, addressed indhis, tis explained.
It is made clear why the estimation of model parameters with the classical Maxinketihbod
estimation framework is a challenging task and how this leads to the develophagquroximate
estimation techniques to tackle this problem. The relevant literature is reviemadly from a

Bayesian perspective, although for the sake of completeness the maj@ayesian techniques
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are also highlighted.

Chapter 3 summarises and describes the dynamical systems that werre tohiesé the algo-
rithms developed. These vary from univariate linear (OU), to forty dinoe@s non-linear (L40D).
The model equations of each system are defined properly and chisstacexamples are given.

Providing approximate solutions to very difficult problems is not a new ideaaiahihe Learn-
ing. Chapter 4 describes an algorithm for approximate inference in parmiadgrved diffusion
processes, following the variational paradigm which approximates arctalia probability dis-
tribution 'p;’ by another oned;’ that belongs to a family of tractable distributions. This is done
by minimising the Klq | pt] divergence (Kullback and Leibler, 1951), between the true posterior
process and the approximate one (i.e. between probability measure®ntiatuous time sample
paths). Unlike most other variational methods, a fully factorized posteeiasityq(x) = [1; 0 (Xi)
(such as the one assumed by Maive Mean Fieldtheory), does not make sense in an infinite
(Markovian) setting. Moreover, as argued in Apte et al. (2007) it isepable and mathemati-
cally correct to define the inference problem in an infinite dimensionacéspésample paths)
setting and then look for efficient ways to discretise it. If the discretisati@urscfirst, so that
the inference problem is never written down in continuous time, it may lead tahaptmal
approximation of the required infinite dimensional problem.

Another issue which relates to the Gaussian processes approximatiomeasky the varia-
tional framework presented here, is the ability of the proposed algorithrerform prediction.
To be more precise, the current approximation algorithm performs smoathtinigp a predefined
time window of inferencd = [to,t¢], given a finite set of discrete noisy observations. However, in
the absence of observations the variational algorithm here seems to stizk tiooole of the (true)
posterior distribution. An example can be seen in the stochastic DW cas€&i(gge 7.5(a)),
where in the absence of observations the VGPA algorithm remains in onefviledl system, not
being able to “see” the other well, due to the uni-modal approximation and i tanay remains
fixed. On the contrary the HMC algorithm Figure 7.5(b), when tested onaime slataset, after
the last observation is “unsure” of where it should be therefore retiorihe true mean of the
system %; = 0), and its variance diffuses in both wells.

The continuous time inference problem, as discussed above, whentidesgtmresults in a set
of discrete time variables that need to be optimised, during the minimisation of thev&ligednce.

In order to reduce the number of variables that need to be optimised atrdlabe complexity
of the algorithm Chapters 5 and 6, introduce two new approximation of theAvadorithm.
The former, in terms of basis function expansions defined on the whole tint®wiaf inference
and the latter in terms of polynomials defined locally between each pair ofwathiesrs. Both

frameworks are derived and presented for the general multivariate arad their convergence
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properties, compared to the original VGPA algorithm, are examined on a &ndgnamical
systems as defined in Chapter 3. The general message, from bothiaderis that they are
able to well approximate the results of the VGPA and also have beneficigatbestics when
estimating the SDE parameters. It is shown that when estimating the drift parar(sigle
point estimates), the bound on the marginal likelihood (from the free ehdmgs not need to
be very tight. Therefore, a relatively low order parametrisation of theaansions can be used
where the number of optimised parameters is lower than within the original vaahframework.
However, for the estimation of the system noise, which is also of great inmearta more accurate
bound on the marginal likelihood must be provided.

In comparing the two new extensions, the LP method seems more appropriattificating
the variational parametefs; andb;, mainly due to the way that the polynomials are defined. As
shown in Figure 6.2, these variational parameters are discontinuousetvation times. This
effect resulted in the requirement for a high number of basis functionsifRBF extension to
capture this roughness. In contrast, the local polynomials do not facathe problem because
they can be defined only between each pair of observations, thereftweing the number of
coefficients that need to be estimated even further.

Finally, to present a more complete study, the methods here are compairest atfzer well
known estimation techniques that cover all the main categories that deal wiBajfesian in-
ference problem. For state estimation a range of ensemble and unscelteshKiters and
smoothers are implemented along with standard Gaussian process regsessaihers and re-
sults are given in Chapter 7.3. The application of the methods to toy exampnsyis very
promising. On the one hand, the variational approach employed heresstem, i.e. the so-
lution is identical to the exact solution when the stochastic process is a Gaosside.g. OU
system). On the other hand, the method is able to cope with strongly non-lystams (e.g. DW
system), in contrast to most approximate state-of-the-art techniquethdcaise of parameter es-
timation the LP approach is compared against a powerful hybrid Monte €ampling algorithm,
a weak constraint formulation of 4D-Var (well known in the data assimilationroanity) and a
fast dual estimation technique based on the unscented Kalman filter. Thetmestioigparameters
is examined asymptotically in two different regimga) infill asymptotics, where the time win-
dow is fixed and the density of the observations increasegtgrdcreasing domain asymptotics,
where the observation density remains fixed but the time window increasenu3e the word
“asymptotic” here is slightly an abused term because the results are exptaiicued not theoret-
ical. Therefore, the limits wherdyps — 0 andT — o are practically never reached. The results
are biased, however these are in accordance with the HMC posteriolirsguaggproach, where in

most cases is assumed to provide the reference solution.
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8.3 Future directions

e Multiplicative noise — Although the original variational Bayesian algorithm (Chapter 4),
along with the two new extensions presented in Chapters (5 and 6), aredlefi a Gaussian
process approximation to the posterior process, in fact this Gaussiant#sn restricts the
applicability of the algorithm and suggests further research directiondwiitierest the au-
thor. The algorithms presented and developed here assume additiv€X@ipis¢he process.
However, a more realistic approach would be to treat systems where tleevaoiss with
the states of the system (i.E(x;)). This case, of multiplicative noise, cannot be treated un-
der the current framework. The reason is that if the noise in the truegsas assumed state
depended then also the approximate process must be modelled by the sarfamaiisn
(remember that if the two processpsandg; do not have the same noise coefficient then
the KL[q || pt] divergence is infinite). However, this would result in an approximatege®c
that is guaranteed to be non-Gaussian (the product of two randorbleariaven if both of
them are Gaussian, is not Gaussian). Therefore, different famileggoobximate processes

must be sought.

e Higher order solutions for the SDE — To perform numerical simulations the continuous
time framework of Chapter 4, has to be discretised. While the use of the stiaBdker-
Maruyama discretisation method here simplifies the presentation of the algotittira a
same time it imposes a small time s@pf good accuracy is to be achieved. This makes
the problem more computationally demanding because a larger number ofgtars. has
to be inferred. Nevertheless, the choice of the time discretisation is noteuriiépe impact
of using different time discretisations, such as the Milstein scheme (Kloeu®®aten,

1999), is an open problem.

e Application to very high dimensional systems- So far the variational methods presented
here can be applied only to toy models, or relatively low dimensional systehesafpli-
cation of the algorithms to real dynamical systems with many degrees of freestich as
the ones used for numerical weather prediction (Kalnay, 2003), islecba. The LP ap-
proximation algorithm (Chapter 6), reduces the number of optimising varialplé9% in
most of the cases tested here (comparing to the original VGPA). Theref@tep towards
the direction of treating very high dimensional system was taken. Anothefibef the
current variational framework is that one can control further the@ppration (linear drift
function of the approximate procegs(x:)), by imposing a specific structure to the linear

parameter in the drifd\;. This direction has to be further explored.
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e R — 0 asymptotic behaviour— Chapter 7 compares the local polynomial extension with a
range of other well known estimation techniques, on estimating the (hy@eaineters of
the tested SDEs, on two different asymptotic regimes. In the first case the timdewvof
inferenceT, is kept fixed and the number of observatidfigs increases. The second case
keeps the distance between the observations fixed and the time windowsegréaf the
two examples the latter (i.e. increasing domain asymptotics), proved expetiiyemiae
appropriate in estimating the model parameters. In both cases the errooret obser-
vations was kept fixed to a relatively small value (compared to the total sgpananifold
that the stochastic process occupies). However, another interesyimptasic regime is
that of keeping the time window and the density of the observations fixed #irdylethe
observation noise vary. It has been observed that in the extreme base tlve noise on the
observations is very high, the algorithms perform poorly when estimatingdkessof the
system. The question that arises naturally is how the estimation of the paraimeaftested

for different levels of the observation noise.

e Observation operator and noise assumptions Usually, to keep the notation and the pre-
sentation of an algorithm simple two important assumptions take place that shaiuid n
restrictive in the range of the applications that can be covered by thesgdmlgorithm.
These arda) a linear observation operatbf-) and (b) independent and identically dis-
tributed (i.i.d.) observations corrupted by Gaussian noise. In this thesisutie assump-
tions were also followed with the addition that the observations were furisenzed direct
measurements of the true system stateslii>a.) = x), when validating the algorithms on
artificial datasets, although the original VGPA framework does not résigcobservation
operator to be linear. Nevertheless, if the algorithms are to be tested oobsEakations
then the methods developed here must be able to treat non-linear obsefwattions. The
second issue that deals with non-Gaussian error statistics for the ablesris more of a
general statement, because in practice the Gaussian distribution modelsotiserethe

observations adequately.

e Computational issues- The future directions related to computational issues are three-fold.
The first has to do with the optimisation method that was chosen to solve theatohsp-
timisation problem of minimising the KL divergence to make the algorithm converge to
its optimal posterior process. In the description of the VGPA algorithm in &hal the
approximation problem was formulated in a Lagrangian framework, wheraebessary
ordinary differential equations that give the predictive marginal (at tifhenean and vari-

ance (i.en andS), were constraints to be satisfied. Therefore, a Lagrangian cagtdon
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was formulated (Equation 4.14) and its stationary points were to be deterniihatfor-
mulation inevitably introduced more parameters (i.e. the Lagrange multiflieesd \;),

which also need to be estimated. Emphasis in this thesis was given to findiruxiampgie
solutions of the original VGPA, rather than proposing a new algorithm. kewe new
formulation of the original variational parameter might have beneficialacheristics by

avoiding the need to compute more parameters.

The second issue is related to the previous one and has to do with the whetharginal
means and covariances are calculated. Ideally, the ODEs (Equationant14213) that
provide these quantities should be solved in continuous time. Howeverpas sh Ap-
pendix E, these ODEs do not have a closed form solution, thereforerivaineethods
required in obtaining the marginal mean and variance, at time 't". In the ruin@mework

a forward sweepsolves the ordinary differential equations, given a fixed set of valoifes
the variational parameteis; andb;. The LP approximation, under this setting, provides
slightly more accurate solutions by applying high order integration methodh, asithe
Runge-Kutta 2'nd order, without approximating the necessary mid-poiatgeiquired by
the integration scheme. Meanwhile, the solution of these ODEs is time-consundrig a
very high dimensional systems almost impossible because the matrix giving tgaahar
covarianceS (of size D x D, whereD is the systems dimension) has to be updated for
each discrete time. Therefore, an alternative re-parametrisation ofitieabwariational

framework might also allow a more efficient way of computing these quantities.

The last issue relates to the LP approximation extension. As was shown, istalline
cases where the LP algorithm compared with the original VGPA, the latter ovaputa-
tionally more efficient not only in actual execution time but also in the number rafticens
that both algorithms need to converge. The (slightly) higher number of itesiticthe op-
timisation routine can be explained by the fact that the LP approximation triesistram
the available functions accepted as solutions, therefore it might take meaoitsr until a
solution satisfies this criterion. On the other hand the original VGPA is freptimise all
the parameters unconditionally. The speed of actual execution time wasssible to cap-
ture accurately because all the simulations took place on different magbinesmputer
clusters), for which the author had no control over the other prosd¢saerun on these ma-
chines. Nevertheless, in practice the LP extension is slower in its presestmemation
due to the fact that the gradients of the cost function with respect to the opdimppaggam-
eters are computed serially (i.e. for each sub-interval separately)edver, the algorithm

could benefit from a parallel implementation of these computations becausmiy these
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gradients are not dependent to each other.

e Implementation — Although it may seem of less importance, the practical application and
broad acceptance of a newly proposed algorithm relies in its ease of imphtinen Cur-
rently the VGPA algorithm, including the two new extensions (RBF and LP), ireswpuite
complex. The pseudocode given in Chapter 4 sketches the outline oftatdtaad param-
eter estimation procedures. A MATLAB implementation is available, howevérdumwork
is necessary in order to provide more guidance and make the algorithms emanécgand

easily applicable.

8.4 Epilogue

The methods developed here propose a novel variational Bayesiamdreaf the dynamic data
assimilation problem. The initial motivation (and desire) is to make the algorithms ablaiand
computationally efficient to very high dimensional real-world dynamical systerhese dynam-
ical models are currently treated deterministically, although there is increagprgciation that
a full stochastic treatment is hecessary for progress to be made orbjigilzaforecasting. This
work is a promising step towards methods that will be able to treat such langg|ex models in

a fully probabilistic way. This concludes the thesis.
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Derivations of the VGPA

framework

This Appendix derives the necessary equations for the formulation ofahational Gaussian
process approximation to the posterior distribution over paths, for partinigreed diffusion

processes, as introduced in Chapter 4. The expressions herecaemted in a generic format
leaving the system specific derivations, for the systems studied in this tleelsesgiven later (see

Appendix D).

A.1 Basic setting

In order to fix ideas and make the derivations more clear the basic settingoduoéd first on
which the variational approximation framework is based on. Consider adetitgfd-dimensional
noisy observation$yk}|*§:1, that are generated bylxdimensional latent process.

It is assumed that the time evolution of tiidlsdimensional stochastic processis described

by an It6 stochastic differential equation (SDE):
dx; = fo(t,%) dt+X2dw;,  dw ~ A(0,dtl) (A1)

wherex; € 0P is the (latent) state vectaiy(t,x;) € OP is (usually) a non-linear functior: =

diag{0?,0%,...,03} is the system noise covariance matrix gnd }ict is the standar® dimen-
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sionalWiener processA discrete version of (A.1) can be provided by the Euler-Maruyameerep

sentation of a SDE. Hence:
OXk = Xk+1 — Xk = fo(Xk)Ot + Vot Xey , (A.2)

wheredt is a positive finite real number representing the time incrementeard A((0,1). As
ot — 0 this becomes equivalent to the continuous time version (A.1).

In a Bayesian framework, the posterior measure in the presence oéimdiept and identically
distributed (i.i.d.) observations is given by:

d ppost _
d Psde

1 K
- X p(yk’Xt ) ) (A3)
[

using the Radon-Nikodym notation, whefedenotes the number of noisy observations Ansd
the normalisation constant, or marginal likelihood, or evidence #.e. p(y1x)). As usual, the

multivariate Gaussian likelihood is given by:

P(Yk[Xt) = AL(yk[h(xe), R) , (A-4)

whereh(-) : 0P+ 0% is a general non-linear transformation between the latent state vector

and the observatiop andR € 099 is the noise covariance matrix related to the observables.
A more thorough study and presentation of stochastic differential eqgatienwell as dif-

ferent discretisation schemes, can be found in many text-books. Heo#ted three of the most

commonly used (Kloeden and Platen, 1999; @ksendal, 2000; Gardd@s).2
A.2 Approximate Inference
The variational free energy, is defined as follows:
in PY:X(6, 2)>
O

T(q(x)vevz) - < n C{(X‘E)

wherep(-) is the true posterior process of the systef) is the one that is used as an approxi-

(A.5)

mation and time indices have been dropped for notational simplicity. Ykso{x;,to <t < ts}
represents here the path of a continuous trdimensional stochastic process e(n)ql indicates
the expectation with respect to procegs.

Alternatively, the variational free energy can be seen as the KL diverg between the ap-

proximate procesg(x) and the joint distribution of the latent states and the observations of the
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true systenp(y, x), as follows:

_ p(y,Xx|0,%)

F(qx),60,5) = - <In q(x‘z)% A6)
_ p(y,X)
_ / qlx)In P 7o ax (A7)
_ q(x)
- / a0 (A8)
=KL [q() | p(y,x)] , (A.9)

where the conditioning on the (hyper-) parametandX has been omitted for notational sim-
plicity.
The free energy provides an upper bound to the negative marginéikédipood. Starting

with the product ruleof probabilities, this is:

p(x,y) = p(x|y)p(y) = (A.10)
p(X,y)
= ) A1l
p(y) o(x1y) (A.11)
after applying the natural logarithm on both sides of Equation (A.11), it gield
P(X,y)
In =In A.12
=Inp(x,y) —Inp(xy), (A.13)

then adding and subtracting the same quantity, by introducing a new distriloiprresults:

—Inp(y) = Inp(x[y) —Inp(x,y) (A.14)
= Inp(x]y) —Inq(x) — Inp(x,y) + Inq(x) (A.15)
_ i PXy) p(xY)
=In ax) In ) (A.16)

Multiplying both sides byg(x) we have:

—q(x)Inp(y) =q(x)In ax) q(x)In : (A.17)

and then integrating overyields:

_ P(x|y) p(x,y)
—/q(x)ln p(y)dx_/q(x)ln a0 dx—/q(x)ln a) dx = (A.18)
—Inp(y) = KL[q(x)[[p(x,y)] — KL[a(x)[[p(x|y)] - (A.19)

Sincep(y) has no dependency onwhich leads to:
—Inp(y|6,%) = F(a(x),8,%) —KL[q(x|%)[|p(x]y, 0, X)) (A.20)
< F(q(x),0,%), (A.21)

because by definition K> 0. Note that the conditioning on the (hyper-) parameéeendX is

added here for later clarity.
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A.2.1 Optimal approximate posterior process

An approximate time-varying Gaussian process is defined, with the sams d@ifitoefficient £)

as the process which is approximated. This process is governed byltwérig linear SDE:
dx; = g (x¢) dt+3=Y2dw,  dw ~ A((0,dtl) (A.22)

where the linear drift is defined agj (x;) = —Aix; + by, with A; € OP*P andb; € OP. Note

that both parameters; andb;, are time dependent functions to account for the non-stationarity
induced by the observations. It is anticipated, that the Gaussian margtimakdt’ is defined as
follows:

A(xt|X) = N (xe|me, &) , (A.23)

(henceforthy), wherem; € 0P andS € OP*P, are respectively the marginal mean and marginal

covariance at timet”. The derivation of the free energy leads to the following result:

F(0(x).0,%) =KL {colpo] + [ Esaelt)t+ [ Epdt) T8 to)dt  (A28)

whered(-) is Dirac’s delta function, Klgo||po] is @ shorthand notation for the KL at the initial
state (i.e. KLq(xo)||p(xo)]) and the energy functions are defined in equations (A.51) and (A.57)

below:

Proof: From Equation (A.9) we have:

F(a(x),0,%) =KL[q(x)]|p(y,x)] (A.25)
_ / go9ln p‘?;fj()dx (A.26)
_ / q(x)In @dx— / q(x)1n p(y|x)dx (A.28)

(11) (12)

I1: This integral is simply the KL divergence between the approximate prioregsogx) and

the true prior procesp(x) defined in (A.1). Alternatively, this integral can be written as:

X) || p(x) /q X)In —);dx (A.29)

However, to make the derivation more clear the above notation will change tmththat follows

to emphasise the discretisation of the sample paths on the time interval (note aicostime
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derivation is also possible).

KL [a(xon) || P(Xo:)] / / q(x g();ON;deN (A.30)

Xo I'IJ o Fq(Xj11/Xj)

(
d(Xo)

- / / q(xon) I ) AP o (A:31)
(Xo0)

:/.../q(xo;N)In g();z)dx N+/ /q XoN) In [ gﬁ;ij;]dxo:m

(A32)
:/q(xo )In dx0+/ /q Xon) In [ a0Xj 2] )]dxo;N (A33)
KL [qol| po]

P(Xj+1lXj)
q(Xj41/X]
Lloolol + .. abron) In N (XJH'X)]deN (A.34)

X
L [dlo]| po] +/ /q Xo) |'Lq (Xit1/Xi) Z)In (Xj1/)) dxo;N (A.35)

(Xj+1/%j)

This result is due to the fact that both processes are Markovian. Hiedenarginal distributions

can be factorised as a product of conditional distributions (i.e. the tramgitababilities):

d(Xon) = q(Xo) |'Lq Xi1/Xi) - (A.36)

The same is true fop(xo:n). Continuing the derivation one obtains:

KL [qllp] = KL [qo]] po] + Z}/ / qu Xi41/%)In jj’; %dxl;N (A.37)

= KL [0o|| po]+

N-1
%/ /quk|xk 1)d(Xj+1/Xj)In (XJH'X) |_| d(Xme1[Xm)dxan - (A.38)

POXj+1[X)) g

At this point the following substitution takes place:

j
/- : /kﬂ Ak [Xk-1)dX1:j-1 = d(X]) , (A.39)
=1

since this is equal to the marginal distributigfx;). Therefore:

N-1

X' Xi
KL[qlp] = KquHpo+z/ /q Qx;2lx;) In Jix21X)

q(Xme1|Xm)dX;:
p(XjJrl‘Xj)m:j_H_ ( m+1| m) J:N

(A.40)
A careful look on the right hand side, of the previous expressiorr,mxa[ln q<xj+1xj)] reveals a

p(Xj1lxj) |
set of integrals that evaluate to one. That is:

/Q(Xj+2\xj+1)dxj+2 /Q(Xj+3|Xj+2)de+3 /q(xN|xN_1)de :

=1 =1 =1
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So we are left with the following expression:

p _ R (CSEE S _
KL [q} p] = KL [dol| Po] + gl/q(xj)/Q(lexJ)In ok, 1)) X+ X (A41)
KLIA(Xj+2/%)) [ PsdelXj+1/%})]
N-1
= KL[dollpo] + Zl/Q(Xj)KL[Q(XJHIXj)IIpsde(XjHXj)]dxj (A.42)
J:
N-1
= KL [gol po] + Zl <KL[Q(X1+1IXJ)\psde(xj+1lxj)]> . (A.43)
= a(x;

The above KL divergence, provided that both procegsasdq are Gaussians, is given by the

following formula (Rasmussen and Williams, 2006, Mathematical Appendix):
1 -1
KL [a(xj+2 X))l P(xj+2/%))] = 5 In[ZpXq 7|+
1
St [Epl ((mp—mq)(mp—mq)TJer—Eq)}. (A.44)

From equations (A.1) and (A.22) one can see a critical assumption; thiatpbocesses have
the same system noise covariar’te Hence the following substitution is made to the previous

expressionXp = Xg = X.

1 _
KLIa(Xj+1Xj) | P(Xj+1l%))] = éln P2 1\

+%tr [2‘1 ((mp—mq)(mp—mq)TJrE—E)] (A.45)
— }In]||+}tf [2—1 <(mp—mq)(mp—mq)T>} (A.46)
&

=0
[ ( (foj22) gL<x,-+1>><fe<x,-+1>—gL<xj+1>T>)]6t
(A.47)

I\)\H

N % [(f" (1) =9 (Xj2)) " = (fo (Xj 1) — AL (X ,-+1))] 3t (A.48)

Therefore for the whole discretised paikyeit holds:

N 1

KL{allp] = KLlawlpo) + 5 3 ((fols) ~0.00) 5 (o0 ~0.(60)) & (A49)

And in the limit of &t — 0:

1t
KL [0l psed = KL [anl o] + 5 [ ((10x) =00 (0)) =74 (1) ~ e x))_dt. (A50)

The energy from the SDE is thus given by the following expression:

Esadt) = 5 (F(x) — 0L(x)) TS (106 - x)) (a51)
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Then the computation of the log-likelihood follows, noting that this is now formdlate

continuous time. This is done to simplify the computation of the integral 12, asrshelow.

mp(yx) = (X)) (A52)
—in (@ f R Fexp S0 R -hx) ) (AS9
— i@~ ZIn[R ~ S~ () Ry~ hx) (A59)

[2:  Finally, this integral becomes:
[ a0 ptyix ) = ~Sin(2m — Jin|RI-
: / a04) ((ye=h0e) Ry —h(x))) de (A.55)
= —5in(2m - SinIRI— 3 ((vi—h0x) R —hix))_ . (A560)

Thus the energy from the observations, at time 't is the given by:

Eondt) = 5 (%) Ry —hix)) +5In@Y+5IRI.  (AS7)

wherey = {y; ,to <t <t;} € 09 is a continuous-time observable process. The discrete time
nature of the actual observations adds the delta function in equation (A.24)
A.2.2 Smoothing algorithm

The time evolution of the Gaussian measure Eqg. (A.23) can be describeddiyoé ordinary

differential equations. These follow from Equation (A.22), and giveBdn (A.58) and (A.59).

my = —Afmy + by (A58)

S=-AS-SA +% (A.59)

wherern; and$; are shorthand notations féd“‘— and %3 o respectively.

ODEs of the means (with respect to time)

dmy = (X +dxe) — (%) (A.60)
= (X¢) + (dX;) — (%) (A.61)

= (dxq) (A.62)

— (9. (x)dt+ = 2dw, ) (A.63)

= (gL (%)) dt+ =Y2 (dwy) (A.64)

(continues to A.65)
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= (—Ax¢ +by) dt (A.65)
= —A: (X;) dt + bedt (A.66)

wheredx; has been replaced witlg, (x;)dt + X2dw;), from Eq. (A.22), anddw;) = 0.

ODEs of the variances (with respect to time)

ds = <(Xt — Mg+ dxe — dmg) (X — Mg+ dx; — dmt)T> - <(xt —my) (X — mt)T> (A.68)
- <(xt — g+ dx — dmg) (% —m, +dx —dmtT)> -5 (A.69)
= <xtxtT —xem{ +xdx, —xtdmtT> +
<—mtxtT +mem,| —mydx, + mtdmtT> +
<dxtxtT — dx¢my’ 4 dxdx,” —dxtdmtT> +
<—dmtxtT +dmm; — dmedx, + dmedm,’ > -5 (A.70)
<xtxtT> — <xtmtT> - <xtdxtT> — <xtdmtT> +
<—mtxtT> + <mtmtT> — <mtdxtT> + <mtdmtT> +
<dxtxtT> — <dxtmtT> + <dxtdxtT> — <dxtdmtT> -
—dmox )+ (dmem/ ) — (dmydx] ) + (dmidm/ ) - S (A71)
=mm, +S —mm, —mem A/ dt — SA; dt+mb/ dt+
mem, Al dt —mib, dt — mem{ +mim, +mm, A dt—
m¢b; dt — mem/ A/ dt+ m¢b/ dt — Agmem, dt—
A;Sdt +bym/ dt + Aimym,” dt — bym,” dt 4 Sdt+
Armem,” dt — bem dt — Aymem| dt 4 bym,” dt 4 O(dt?) (A.72)
= —ASdt— SA/ dt+ Zdt+ O(dt?) (A.73)

Note that in Eg. (A.59) have been neglected terms beyond first ordkr For the above deriva-

tions the following expectations (with respect to the approximate praggbave been used:
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<xtxtT> =mm +$
<xtmtT> = mem,’
(xdm{" ) = (xe(~Amdt+ b))
= (x(-m{ Al +b)at)
— <—xtmtTAtT>dt+ <xtth>dt
= —mym{ A/ dt+mb/ dt
<mtxtT> =mm,
<mtmtT> =mm,
<mtdxtT> =m <dxtT>
= my(—Aymdt+ bedt) "
=my(—m{ A/ dt+ b/ dt)
= —mym{ A/ dt+ mb,’ dt
<mtdmtT> =m <(—Atmt +bt)T>dt
—mq (~m{ A +b/ )dt
= —mym{ A/ dt+ mb,’ dt
(dxe’ ) = (oL a)dt+ 2 2dwy) (g1 (xp)dt-+ 2 2dwn) T)
= <(9L(xt)dt+ El/det)(gL(Xt)Tdt—l-thTzl/z)>
= <gL(Xt)gL(Xt)T> (dt?) + <g|_(xt)dtdth21/2>

o(d?) =0

+ <21/2dwtg|_(xt)Tdt> + <21/2dwtdth21/2>

=0

— 12 <dwtdth > »12.4 0(dt?)

~——
=dtl

= »12dtI 22 4 o(dt?)
= dtX 4 0(dt?)

<dxtdmtT > - <(g|_(xt)dt+ >1/2dw, ) (—Amydt + btdt)T>
=0+ 0(dt?)

<o|mto|xtT > - <(—Atmtdt+ bedt) (gL (x)dt + El/zdwt)T>

=0+ O(dt?)
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<dmtdmtT > - <(—Atmtdt+ bydt) (—Amdt + btdt)T> (A.99)

— 0(dt?) (A.100)

<dmtmtT> - <(—Atmtdt+ btdt)mtT> (A.101)

= —Amem,’ dt+ bym, dt (A.102)

<dmtxtT > - <(—Atmtdt+ bedt)x, > (A.103)

= —Aymym, dt+bym,’ dt (A.104)

<dxtmtT> = (dx;)m," (A.105)

= —Amem,’ dt+ mem,’ dt (A.106)

<dxtxtT> = <(g|_(xt)dt+21/2dwt)xtT> (A.107)

= <g|_(xt)xtTdt+ Zl/zdwtxtT> (A.108)

= (9o )t =2 (dwo ) (A.109)
—_—

- <(—Atxt +bt)xtT>dt (A.110)

— A <xtxtT >o|t+bt <xtT >dt (A.111)

= —Amym,’ dt — A¢Sdt -+ bym, dt (A.112)

<xtdxtT> = <xt(g|_(xt)dt+ 21/2dwt)T> (A.113)

= <xtgL(xt)Tdt+xtdthEl/2> (A.114)

- <xtgL(xt)T> dt+ <xtthT > »1/2 (A.115)
——

- <xt(—Atxt +bt)T>dt (A.116)

_ <xtxtT > Al dt+ (x) by dt (A.117)

= —mim{ A/ dt — SA/ dt+ m;b, dt (A.118)

Lagrangian cost function

In order to ensure that constraints (A.58) and (A.59), are satisfiedpliiogving Lagrangian is
formulated:
tf tf .
L=19%(q,6,%) —/t A (g +Agmyg — bt)dt—/t tr{ P (S +AS +SA! —X)}dt, (A.119)
0 0
where); € OP and¥, € O0P*P are time dependent Lagrange multipliers, withbeing symmet-

ric.
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Taking the functional derivative of (A.119) w.rA; yields:

t .
OacL = O, (T(q,é’,E) - [ w(E rAS +SA - )
0
t
— A (e A — bt)dt> (A.120)
to
t .
= a7 (@.0.5)~Oa [ 1{¥(&+AS+SA] —5))dt

tf
— DAt / )J(mt +Aim; — bt)dt (A.121)
to

18 18]
= Oa, (/t Esde(t)dtJr/t Eobs(t) Y 8(t —tn)dt+KL [qupo])
0 0 n
t t
— 200a, / ftr{\IltAtSt}dt—DAt / fAtT Aymqdt (A.122)
to to
= O, Esadt) — 20§ — Aem, (A.123)

where facts thal; andS are symmetric has been used.

In a similar way, the functional derivative of (A.119) w.i%. is:

tf .
Dth = Dbt <T(q,0,2) —‘[ tr{‘I’t(S[ +AS + StAtT — E)}dt
0
t
A (e A — bt)dt> (A.124)
to

tf .
~ a7 (@6,%) - O [ 0{¥(&+AS+SA! - )}t

tf
O, /t A7 (g + Aimy — by)dt (A.125)
0

— O, ( /t " Eggdt)dt+ /to " Eond) 3 801 —ta)dlt+ KL [co po]>

0 n

tf
+Op, /t Al byt (A.126)
0

= Up, Esde(t) + At (A.127)

At this point one can derive the functional derivatives of the en&igy with respect to the

variational functiong\; andby. First Equation (A.51) is differentiated w.rl; :

O Exadt) = o (5 ({1000 0cx0) ™S 0000~ 0, ) (A128)
= 5 [0~ 000 = 100~ 00))] ) (a.129)
1 T
= = ( Oy [ (F(x) +Ax) — b | =7 (F(x) +Aex) — by ]> (A.130)
(o ( ) =( ).
:_%22—1 <f(xt)—g|_(xt)>qt) (A.131)
— 5t ((f(xt)>q + A g bt> (A.132)
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Moreover, from Equations (A.127) and (A.132) we have:
Op, Esadt) = —A¢
(b, Esadt) = —% 2 ((f(xt)>qt +AC(Xe) g — bt) ,
from the above equations it reads:
A =37 ({F0x))g +Ar (g — br)
and by re-arranging the terms in the above equations we get:
br = (f(Xt)) g +AtMe — XA,

which is the update variational function lof.

Following the same procedure, the differentiation of Eq. (A.51) WA tis:

I Baadt) = O (5 (1000~ 0 (x0) = 400~ 0 (x0), )

= <aAt [((f(xo by - (—Atxo)Tz-l((f(xt) ~by) - (~Ax) )

1.
= 52571 {(f(x) + Acx —bt)xtT>qt

=x1 <f(xt)xtT+AtxtxtT—btxtT>
a

Il
¥
[uN
—
—
X
SN—
X
~_
fe
+
>
P
R
X
_‘
~_
|
=)
PR
X
_‘
~_
N——

(
<f(xt)x3>q FA(Mm +S) - btmtT>
(

I
I\
AN
S
=
x
x
|
3
~_—
2
+
>
wn
N———
|
]
o
m
)
Q.
@2
=
3
4|

where we have made use of the Equation (A.136) and the following identity:

(Oufx))g = (fx)0a—m) ") s
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),

(A.133)

(A.134)

(A.135)

(A.136)

(A.137)

(A.138)

(A.139)

(A.140)
(A.141)

(A.142)

f(Xt)XtT>qt +A(mm +S) —bm, + <f(Xt)mtT>q[ - <f(Xt>mtT>qt)

(A.143)

(A.144)

(A.145)

(A.146)

(A.147)

(A.148)
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Proof of identity given by Eq.(A.148) :

(Ouf)g = | Dt (A.149)

—00

— [ :X’ [Dxt (f(xt)q(xt)> —f(xt)Dth(xt)] dxq (A.150)

—00

— [ ot oxcs [ ioa00s T -mgde (s

=0
[ 0 0xe-m0 s et (A.152)
(FOx) (%~

mt)T>q st (A.153)

Note however, that in order for the first integral in Equatiénl51), to be zero is is assumed that
the unknown functiori(x; ), “moves” slower then the Gaussian approximation procgss, as
Xt — .

The functional derivative of (A.119) w.r.in; is given by:
tf .
Dth = Dmt <_’Fg<q,9) _/t tr{‘I’t(S[ +2A{S — Z)}dt
0

t
_/f)\tT(r'nt +Am; — bt)dt> (A.154)

to

ts .
~ O F(@.6.5) = On, [ 1{W1(&+2AS - 3o

0

tf
—Dmt/t A (e + Acmy — by)dt (A.155)
0

— O, ( / ! Esadt)dt+ /t " Eondt) 3 811 —ta)dlt+ KL [co po]>

0 n

te
— O, / AT+ A7 A — A bdt (A.156)
t
s ’ s s
— O, / Esae(t)dt — O, / AT gt — O, / AT Aimydt (A.157)
to to to
tf tf . tf
— Om, / Exadt)dt + O, / AT medt — O, / AT Aimydt (A.158)
to to to

Setting this expression equal to zetdy{ L = 0) and then rearranging:
t tr . tt
O, / Exadt)dt + Oy, / AT medt — O / AT Amedt = 0 (A.159)
to to to
O, Esaet) + At — Al A =0, (A.160)
leads to an ODE that describes the time evolution of the Lagrange multiplier
At = —Om, Esadt) + A At , (A.161)

where we have used the fact (from product rule for differentiatioat). th

(A.162)
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and also the assumption that at the final tirrye,there are no consistency constraints, that is:
A, = ¥, =0.

Working the same way as above and taking the functional derivative.di@ w.r.t.§ results:

t .
Os £ =0Os <T(q,0,2) —/tftr{‘I't(St +2AiS - X) }dt

t
— f )\tT(mt —I—Atmt — bt)dt> (A163)
to
t .
=Us7(0,0,%) —Us /t f tr{¥ (S +2AS — ) jdt (A.164)
0

—DOs ( /t " Eggdt)dt+ / ! Egpdt) 3 8~ ta)dt+ KLl po]>

—0Os, / tr{ Ty (S +2AS Jdt (A.165)

—DOs / Eeudt)dt — O / WS dt— 20 /  r{TAS it (A.166)
to to to
tf tf . tf

—DOs / Ecadt)dt + O / tr{ ¥, S }dt — 205 / tr{ T AS Jdt (A.167)
to to to

Setting this expression equal to zetds(£ = 0) and then rearranging:

0= s / Ecadt)dt + O / tr{ ¥, S }dt — 205 /  BAS (A.168)
to

0= DS[ Esde(t) + \I’t —2WA; (A169)
leads to an ODE that describes the time evolution of the Lagrange multiglier
W, = —Og Esgdlt) + 28 A, (A.170)

where the fact has been used (from properties of trace differenfidtian

d d

atr{‘l’tst} = tr{a(‘l’tst)} (A.171)
- tr{@s 4, C(Ift‘ (A.172)
_tr{ S[}+t{\Ift S‘ (A.173)

Along with the set of ordinary differential equations (A.161) and (A.1%@hich describe
the time evolution of the Lagrange multipliers, whenever there is an obsenthtaoiollowing
jump-conditions apply.

First is considered th&; jump-condition, which is given by the following expression:

where the superscripts andt,” indicate times just before and after the observation time. Then the
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functional derivative oEgps(tn) w.r.t. m; is calculated, which plays the role of the jump amplitude:

Om, Eobs(t) = Om, <; <(yt —Hx¢) "R (yi — th)>q + g In(2m) + % In |R|> (A.175)
= %Dmt <<(yt—th)TRl(yt—th)>q[> (A.176)

1
= Dmt<<ytTR1yt—ytTR1HXt—XtTHTR1yt—|—XtTHTR1HXt> ) (A.177)
Gt

2
= %Dmt <ytTR_1yt —y{ RIHm—m/H'R 1y, +tr{HTR‘1HSt}

+m/ HTRlet> (A.178)
= %Dmt (ytTRlyt —2y{ R Hm; +tr {HTRlest} + mIHTRlet> (A.179)
- % <—2ytT RIH + 2HTR’1Hmt) (A.180)
=-H'R(yt —Hmy) (A.181)

Finally we have:

A7) = A(ty) +HTR™(Yy, —HmMy) (A.182)

Then we consider th&; jump-condition which is given by the following expression:
W(ty) = P(ty) — OsEops(th) , (A.183)

Again the functional derivative dqpg(th) W.I.t. &, plays the role of the jump-amplitude.

O Eobs(t) = Os (; <(yt ~ Hx) TR Yy, — th)>qt + g In(2r) + % In yR|> (A.184)
= ;Ds[<<(ytth)TR_1(ytth)>qt) (A.185)
_ %Dst ( <y§R*lyt —y{ R MHx —x H R 1y, +xtTHTR’1th>ql ) (A.186)
_ %DS (ytTR—lyt —y{ R HM —mHTR 1y, +tr{HTR‘1HS[}
+m, HTR‘let> (A.187)

_1

50s (ytTRlyt —2y{ R7*Hm +tr {HTRleSt} + mIHTRlet> (A.188)

1
= éHTFrlH . (A.189)
The final expression becomes:

V() =¥(t,)--H'RIH. (A.190)
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A.3 Parameter Estimation

Before computing the necessary gradients for estimating the parametei@gfzmgian equation
(A.119), needs to be integrated by parts in order to make the boundariticnaeexplicit. That
leads to the following expression:

L=7(q.6,5)— /tf tr{\I« <s 1 2AS - 2) }dt— /t“ Yy <r‘nt A, — bt>dt (A.191)

to 0

=7(9,0,%) —/tf tr{\IltS[} +tr{2\IltAtS[} —tr{\IltZ}dt

fo

t
— AT+ AT A — A bt (A.192)
to
1 .
= %(9,0,%) - / f (;jttr{\IltS} —U{‘I’tst} +tl’{2‘I’tAt$} —tr{‘I’tE}dt
to
t .
- f:jjt(AtTmt)—)\tTmt4')\tT'°\tmt—)\thtd'[ (A.193)
to
t . t .
— 7(q,0,%) —/ftr{\m <2Ats[ —z> —\Ilts[}dt—/f {A? (Atmt —bt) —Aimt}dt
to to
—/t’ 9idws !+ 9 AT mat (A.194)
o odt | de "t :
t . t .
= f(q,e,z)—/ftr{\m <2Atst—2> —\Ifts[}dt—/f{xi (Am—m) —AtTmt}dt
to to
s d
7/ (tr{\IltSt} +(,\Imt))dt (A.195)
to dt
t . t .
— 7(q,0.%) —/ftr{@t (2Ats —z) —\I'ts[}dt—/f {A? (Atmt —m) —)\tTmt}dt
to to
— A, My, +A My, — tr{\Iltf S, } +tr{\IltOSto} (A.196)
——

=0 -0

this derives from the fact that at the final (algorithm) time, when the costtion has been min-
imised, the consistency constraints should be fulfilled. That means that bgthrige multipliers

are equal to zero.

A.3.1 Initial State

The initial approximate posterior procegé«o) is equal toA/(xo|mo, Sp), where the initial true

posterior procesp(Xo) is chosen to be an isotropic Gaussian (Ag(Xo| o, Tol )).
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Taking the derivative of (A.196) with respectity, leads to the following expression:
t .
DmOL = Dmo (T(q,e, 2) — / f tr{\Ilt <2AIS — 2) — \IltS[}dt
to

1 .
—/f{AtT<Atmt—bt> —Aimt}dw)\gmoﬂr{\yoso}) (A.197)
fo

= OmpF (0,0, %) + Oy (A Mo) (A.198)
— OmoKL [q(X0)|[P(X0)] + Ao (A.199)
— Ao+ %Dmo (In ITol - Sy +tr{(rol )~ [(mo — p10) (Mo — po) "+ So —Tol} })
(A.200)
:,\0+;Dmo< r{ Tol)~ mo—uo)(mo—uo)j }) (A.201)
= Ao+ ;tr{ Dm0< (Tol)™ m0 — p10) (Mo — MO)T} > } (A.202)
= Xo+ ;tr{ Omo <r0 Mo — p0) (Mo — p,o)T) } (A.203)
=Xo+ ;tr{ro 12(mo — o } (A.204)
= Ao+ Ty (Mo — o) (A.205)

Taking the derivative of (A.196) with respect $g leads to the following expression:
t .
Os,£ = Os, (T(q,e, =) - / f tr{\pt <2AtS[ - 2> - \Iltst}dt
t
tf i .
f/ {)J <Atmt bt) )\tTmt}dt+)\0Tmo+tr{‘Iloso}> (A.206)
to
= Dsof(q,e,Z)JrDSOtr{\IloSo} (A.207)
= Os,KL[a(Xo0)[|p(Xo0)] + ®o (A.208)

_ \1:0+;Dso<m\ro| .361|+tr{(ToI)’1 [(mo—uo)(mo—uo)wso—rol} })

(A.209)
- qz0+%msolnyr0| -Sgly+%msotr{(ro|)*1so} (A.210)
g Yo, 1o
=Wy 250 + 2(To|) (A.211)
S - <T51| _ 551> (A212)
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A.3.2 Drift Parameter

The gradients that are associated with the drift param@tdepend only on the energy that comes

from the SDE term in the posterior process. Hence:

0oL = Do <T(q,0,2) [ tr{\IJt <2Atst —2> - \'I«S[}dt

to

tf .
—/ {)J (Atmt—bt> —)\tTmt}dt+>\gmo+tr{\IloSo}> (A.213)
to
=0p¥(q,0,%) (A.214)

= g < /tf Esadt)dt + /totf Eobs(t) 3 8(t — ta)dt + KL [q(Xo)| p(Xo)]) (A.215)

to n

t
—Oe /t "Eggdt)dt (A.216)
0

1
— [ OpEcudt)dt . (A.217)

to

To compute the above integral (A.217) one must first compute the dee\@ftisqt) w.r.t. 6 as

follows:
OoEsaet) = Uo (; <(f9—g)T21(f9—g)>qt> (A.218)
1 )
=5(De |(fo-0)" 2 o —0)| )_ (A.219)
_ % <D9 (fgz—lfg 3 lg—g'x 1, +gTz—1g> > (A.220)
G
= 2 (D0(T3 2 9) Do '0) ~ Do(a" 3 o)) (A221)
2 Ot
_ % ((Tt3)= o+ H(Dofo) — 9" 4(Tafo) - gTE’l(D9f9)>qI (A.222)
_1 <2f§2*1(D9f9) — 2gT2*1(Dgf9)> (A.223)
2 o)
T
- <(f<xt> —gL<xt>) zl(mef<xt>>> , (A224)
O

where we have used the shorthand notatfgrfer f(x;) andg instead ofg, ().

A.3.3 System Noise Covariance Parameter

The estimation of the system noise is of great importance because the syéeralong with the

drift parameter determines the dynamics of the system. The gradient of6jAd®h respect to
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the system noise covariangis given by:

Ozl = DOy (f(q,e,z) [ tr{\m <2Atst —z> —\'Ivts[}dt

to

t .
—/f {)J <Atmt—bt> —AtTmt}dtJrAgmothr{\IloSo}) (A.225)
to

t
_ Dg?(q,H,E)—&—Dg/ftr{\IltE}dt (A.226)
to
t t
:/ngEsde(t)dt—i— 'Dgtr{\ytz}dt (A.227)
to to
t t
_ [ DgEsdt)dt+ [ Wit (A.228)

to to

and the gradient dEsqeWith respect tax is given by:

UsEsadt) = Us B <(f9 —g) = (fg— g)>qj (A.229)
—5{(0s[te-0= M0 —g)])_ (A.230)
=—5(= Tto-9)te-9 =) (a.231)
=32 (%) - 00—k B (A232)
(o

because matriX is symmetric.

A.3.4 Observation Noise Covariance Parameter

Although estimation of the noise related to the observable values is not addresthe thesis,

the estimation of the noise covariance parameters is a straightforwardiertand in some sense
completes the variational framework. The gradient of (A.196) with rdsjfgethe observation

noise covarianc® is given by:

OrL =R <T(q,9,2) —/tf tr{‘I’t <2At5t —2> — ‘i’tst}dt

to

_ /tf {At—r (Atmt — bt> —)\tTmt}dt+Agmo+tr{‘I’080}> (A233)
to

=k < /ttf Esadt)dt + /totf Eanslt) 3 3(t —to)dt+ KL [a(Xo) | p(Xo)}> (A.235)

0

~ Ok /t ! Eondt) 3 5(t —to)dt. (A.236)
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Therefore to compute the above gradient, one has to compute first thergraitEq,s w.r.t. R.

OrEobs(t) = Or (; <(yt —h(x)) "R (y — h(xt))>q + d In(2m) + % In |R|) (A.237)

2
— 50 (0 -hx) 'R —h(x)) +5CaInIR] (A.238)
=3 (R =) i — ) TR+ 3R (A.239)
= 3Rl —hx)) e —hix) ) R+ SRS (A.240)
- %R’l (I - <(yt (X)) (v — h(xt))T>qt R1> . (A.241)

A.4 Summary

To sum up, Appendix A presents a complete derivation the original VG&Adwork. The mathe-
matical expressions cover the full multivariate case, although for tharaie cases more simpli-
fications apply. The specific expressions of the aforementioned egsiatiorihe systems tested
here, are presented in Appendix D. In deriving the above equationg nsaful matrix identities

were found inThe Matrix CookbookPetersen and Petersen, 2007).
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Computing the new gradients

of the RBF extension

Chapter 5 introduced a new RBF re-parametrisation of the initial variatiooalgm ending up

with two sets of weights, one for the linear variational param@t&r}iﬁ‘g and one for the off-

set parametefb; fgg, whose optimal values need to be inferred by means of a gradient based
optimisation algorithm (SCG).

As usual these algorithms need the gradients of the objective (cost) funeiib respect to
the parameters that are optimised. In this case the necessary gradientseth&b be computed
are those of the approximateagrangian function (see Eqg. (5.5)), with respect to these matri-
ces/vectors, as shown in Eq. (5.8). Following the derivations of the inNM&PA) algorithm
(Appendix A), the desired expressions are derived in the following tetians.

Once all the necessary derivatives have been computed they asg@didiogether and a batch
optimisation of the cost function leads to the optimal approximate posteriorg.oOme obvious
difference, comparing to the original VGPA framework, is that all the jote partial derivatives
have to be computed separately, for each basis function. In a serial imybgroe, as the one
presented in the current work, this has a negative effect on the totgdwtational performance of
the new approach. However, there is no fundamental reason to peepanallel implementation

in computing these derivatives, to speed up the overall performance.
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B.1 Gradient of the approximate Lagrangian with respectto A weights.

To compute the required gradiefiy £, with A = {Ai}BAb, one must first compute the partial

derivatives ofZ with respect toA; Vi € {0, 1, 2, ..., Lap}. This is done as follows:

0L, 0 [~
<7(qt,9,2)

oA OA
t ~ ~ . ~ ~
—/t {AtT(mt—i—Atmt—bt)—i—tr{\Ilt(St +AtS[+StAtT—E)}}dt> (B.1)
0
_ijr( 6,%)
- OA, qt7 i
a tf T . ~ ~ - ~ ~T
- = {)‘t (mt+Atmt—bt)+tr{\Ilt(S[ —I—AtS[—I-S[At —2)}}dt (BZ)
aAi to
=9 5 g0m) - [ ATAm di— 2 /tftr{\IJASt}thr{\IlS[AT}dt (B.3)
~ oA, G, 9, oA iy ty A; Ji tAtL XA -
0 ~ ts ts
- aa 7@e®)— [ amian di-2 [ s d. ®4)
0A to to

whereA; has been substituted Wigﬁ‘o A; x @(t), according to Equation (5.4).

B.2 Gradient of the approximate Lagrangian with respectto b weights.

In a similar manner, the required gradi@gz, with b = {bi}(';’“’, is computed after the partial

derivatives ofZ with respecttdo; Vi € {0, 1, 2, ..., Lap}, have been calculated.

~

oL @
3, = am(ﬂq"e’z)

- /t' {,\I(r'nt + Ay — by) +tr{ W (& +AS +SA — 2)}} dt) (B.5)

to

a jad a tf T

—a—biff(qt,e,E)—i—a—bi . Ay by dt (B.6)
0 ~ t

— o T @)+ [ N, ®7)
abi to

whereb; = ziL:bObi x @(t). The partial derivatives of the approximate value of the free energy

F (o, 0,3), with respect to the weights; andb; are computed in a similar way.
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Computing the new gradients

of the LP extension

The new parametrisation of the initial variational problem in terms of local poiyals, as pre-
sented in Chapter 6, concluded with two sets of coefficients, one for the Magiational param-
eter{AJ'}f:0 and one for the offset parametgh! ]]:0’ whose optimal values need to be inferred
by means of a gradient optimisation algorithm. In a similar fashion as AppendheBiecessary
gradients that need to be estimated are those of the approxibagtengian function (see Eg.
6.3), with respect to these matrices/vectors.

Note that the gradients have to be computed within each sub-interval sdypadrathe present
implementation this is coded serially for simplicity, which has an increased commathtiost to
the total performance of the LP algorithm. However, a parallel implementatiorcsuesged to

improve the speed of computations.

C.1 Gradient of the approximate Lagrangian with respectto A coeffi-

cients.

To compute the required gradiefii £, with A = {AJ'}]T'ZO, one must first compute the partial

derivatives ofZ with respecttad! vV j € {0, 1, 2, ..., J}. This is done as follows:
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0Ll 0
= o (Fa0w).0.2)
_/T_ {)\tT(mtJrAtjmt—Btj)+tr{\Ilt(S[+Ath[+S[A§T—2)}}dt> (C.1)
teT!
d

i TAJ
aAJT(( 0.6.%) 500 | AT Alm at
d o -
—ﬁ/ r{WAIS ) +r(BSA] T} dt (C.2)
j _ T _
= o Flax).0.3) - [ amplodt-2 [ wspl . ©3)

where,&tj has been replaced with! x pl(t), according to Equation (6.4).

C.2 Gradient of the approximate Lagrangian with respect to b coeffi-
cients.

To compute the required gradiett, £, with b = {bl}J _o» One must first compute the partial

derivatives ofZ with respecttd! V j € {0,1,2 ..., 3}

0Ll 0
J
S~ oo (P00,

- /eTJ' AL+ Alme—B) + (@ (S +Als + SALT - 3)} dt> (C.4)

d "

T o TRI

abj}' (a(x).0,2)+ 305 | ATBl dt (C.5)
fwfl( 90%),0. %)+ | A pl(t) dt ,whereb! = Bl x pl(t). (C.6)

The partial derivatives of the approximate value of the free engrtfyi(x;),0, %), with respect

to the coefficient®\! andb!, are computed in a similar way.
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Analytic expressions of the

systems studied

This Appendix provides detailed analytic derivations of the energy terchsedated gradients for
the univariate systems (OU and DW), as well as the three dimensionalZ &&r{L3D). Once
the complete analytic expression of the energy related to the SDE is deygl the gradients
of this quantity will be developed. The optimal initial values (for the gradigningisation pro-
cedure) of the linear and offset paramet&(®) andb(0) will be given. In addition, when the
analytic expressions are not available an alternative method to obtain tbesaec approximate

expressions is provided.

D.1 Ornstein - Uhlenbeck (OU) system equations

The first system derived analytically is the one dimensidbadstein-UhlenbeckOU) process.
The stochastic differential equation that describes the time evolution of thar Iprecess, as

introduced in Chapter 3, is given by:

dx = —0(x — p)dt+ o?dw (D.1)
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whered > 0, is the mean reversion rate amé the mean value, which is often set to zero. Hence

the drift function of this one dimensional SDE is:

f(x) =—6(% — W) (D.2)

Before proceeding with the expression of the energy term, two import@nages are com-
puted in advance that will help the following derivations. The first is theagex drift function

with respect to the approximate Gaussian distributidn This is given by:

(f(xt))q = (=8 — W))q (D.3)
=6(L—m) (D.5)

The second expression is the averaged gradient of the drift functtorregpect tog, which

is derived as follows:

(Ox (%)) = (Ox (=8(% —)))q (D.6)
= (=00 X )¢ (D.7)
= (—0)q (D.8)
S (D.9)

Energy from the SDE

The first expression is the energy term associated with the stochastienliif& equation (D.1).
In what follows the initial expression will correspond to the general multwa case as shown
in Chapter 4 and derived in more detail in Appendix A. Later on the gem@essions are

substituted by the model equations of the system studied.

1This is a shorthand notation fo (x|me, ).
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Esadt) = 5 { (106) - 0.06) =X (x) 0L (%)) (D.10)
= 23100 — 0 00) (10%) — 0 x) ) (D.11)
G
2
= ;0_2<<_6(XI_U)_(_atXt+bt>> > (D.12)
G
1 2
— 202<<—9xt+9u+atxt—bt)> > (D.13)
O
= 202<62x$ — 02ux — Bap@ -+ Bbyx — 2 + 6717 + Bpax — Bply
— Bax¢ + Bpax + adx? — agbix + Obyx — Bk — acbix +b€> (D.14)
O

- ;02<<x{2(92— 203 +87) ), +2(% (8 —6°u+Bpa —ahy)),

+ 0212 — 26ph + b?) (D.15)
= ;0‘2<<><3>q (0—ar)®+2(%), (8br — 6%+ Bua — ahr)

+ 0212 — 28ph + b?) (D.16)

Step (D.11) is possible because the system is univariate and the noiei@oiefioes not depend
on the state vector. Finally, (x), and <xt2>qI are Gaussian moments; their expressions can be
found in Appendix F.

Gradients with respect to the marginal means and variances

The next section involves the derivation of the gradient&gf with respect to the first two
marginal moments. First is shown the derivative with respect to the margiread meand in

a similar way the derivative with respect to the marginal varianéellows.

Gradient of EggeWw.r.t. m:

;0‘2<<x12>q[ (0—ar)®+2(x) (Bby — 6%+ Bua — ahy) + 672

— 26ph + b?)] (D.17)
= 5720 (%) (0~ 202200 (%) B0y~ bua —aby)) (0.9
_ ;oZ(zmme— 20)? 1 2(6b, — 6%y1 1 Byia atbu) (D.19)
- 0‘2<m(9—a)2+9(br ~6u-+pa) —atb[) (0.20)
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Gradient of EggeW.r.t. s:

;02<<xt2>q[ (8—a)®+2(x)q (Bbr — 6%+ Bpa — achy) + 67°

—20ub + b?)] (D.21)
= 207204 (R), (8- (D.22)
= 2020-a) (D-23)

where the derivatives of the Gaussian moments with respegtdads; (i.e. Um (X)q,, Um <x12>qt

andg <th>q1)a are provided in Appendix F.

Gradients with respect to the variational parameters

Appendix A, showed how the derivatives of the general expresditinedEsqe With respect the
variational parameter8; andb; can be derived. Following that example, here we compute the

same expressions for the OU system.

Gradient of EggeW.r.t. the offset parameterhby:
O Esadt) = =072 ({F(%))q +a (%) — ) (D.24)

=-—0? (e(ufm)+at<><1>q *bt) (D.25)

using Equation (D.5).

Gradient of EggeW.r.t. the linear parameter a;:
OaEsadt) =02 (04 T(x))q +a) & — O Esadt)m
=0 ?(—0+a)s — Op Esadt) M (D.26)

using Equation (D.9).

Gradients with respect to the (hyper-) parameters

For the estimation of the (hyper-) parameters, in a gradient based optimisatitime, as sug-

gested in Chapter 4, the gradients of the energy term have to be estimatélie BdJ system are

given as follows:

Gradient of EgqeW.r.t. the drift parameters #: The general expression of the OU drift function

includes two parametes= [, 4| ". The gradient oEggeWith respect to this vector is:

0Esge OEsge] |
DGEsde_[ sde sde]

90 ' op
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The partial derivatives are computed separately as follows:

aEsde_ a |:1 _2<

()q (8—a)%+2(x)q (Bbx — 61+ Bpa —arhy) + 6%

8 082
— 26ph + b?)] (D.27)
_ 1 5 o 0 a2 2 ﬂ 202
=39 <<Xt>qae<9 &) +2(%)q ae(eb‘ 0%+ Bua —acby) + S50
)
- 2aeepu> (D.28)
= 302(2<x3>q (8—a) +2(%)q (bx — 20+ pa) + 204 — 2ubc) (D.29)
= 02<<><3>q (8—a) + (X)q (bt — 26U+ pa) + 6y’ — uh) (D.30)

OEsge 0 |1 [, > a4 2 22

cete L 15072((08)q (8- a7 +20x)q (00— i+ Bia — by + 8
—26ph + b?ﬂ (D.31)
1, 9 , 0 oo 0
-0 <2<x{> 1(80 — 6%+ 3 — ) + 6% zaueun) (D.32)
_ %0—2 (2 (X)q (02 — 62) + 2071 — 26b[> (D.33)
=002 <m(at —0) +06u— bt> (D.34)

Gradient of Esge W..t. the noise parameterc?: Following a similar derivation to above the

derivative of the energy with respect to the system noise coefficientdaa dy:

0Esge 0 [1
o =302 |3 2<<xt2>qt (68— ar)?+2(x)q (b — 6%+ Bpa —aky) + 6747
— 26uh + b?)] (D.35)

- _;04<<X"2>q: (6—ar)?+2(%) (6br — 6%+ Bua —achy) + 67

— 26uh + b?) (D.36)

Optimal initial values of the variational parameters

In order to initialize the optimisation routine (smoothing algorithm), as suggesteldapt€r 4,an
initial guess has to be made for the all ihiecretizedvariational parametera(k) andb(k). As

shown in Archambeau et al. (2008), these can be expressed as fgnuitihe Lagrange multipli-
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ersy(k), A(k) as well as the meama (k) as shown below:

a(k) = — (Ox f(xt)) g + 2079 (K) (D.37)
b(k) = (f(xt)) g +a(k) xm(k) — a®A(K) (D.38)

wherea(k), b(k), m(k), ¥»(k) and A(k) are now vectors containing all the discrete time variables
a, by, m, Y and Ay, k is the index of the optimisation loop (i.&k indicates algorithmic time
rather than discretisation time) and the symboindicates element-wise multiplication between
two vectors of the same size. Using Equations (D.5) and (D.9) these sixjgmegan be further

expanded. The linear parameter becomes:

a(k) = — (Ox f(xt)) g +20%9 (K) (D.39)
=0+ 202 (k) (D.40)
and the bias parameter:
b(k) = (f(Xt))q +a(k) xm(k) — a®A(K) (D.41)
=0(u—m(K)) + (8+20%¢p (k) *m(k) — a*A(K) (D.42)
= Bu—Bm(Kk) 4 8m(k) + 2021 (k) * m(k) — 6*A(K) (D.43)
= Bp+ 0?(2¢p(K) s m(k) — A(K)) (D.44)

However fork = O (i.e. the beginning of the optimisation process), the Lagrange multipliers are
set to zero (i.eap(0) = 0 andA(0) = 0). Hence the above expressions for the initial iteration of

the algorithm are simplified to:

a(0)=6 and b(0)=6u (D.45)

D.2 Double Well (DW) system equations

The second system for which the expressions of the variational frark@am@derived analytically,
is the univariatelouble wel(DW). This non-linear stochastic process is governed by the following
SDE:

dx = 4% (8 —x2)dt 4 02 dw (D.46)

with drift paramete® > 0, indicating the system’s stable states.
The analytic derivations of this system is follows a similar approach to thaepted for the

OU process. First the averaged drift function is computed with resp#oe {Gaussian distribution
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g:, as shown in Equation (D.49), followed by the averaged gradient ofrifienith respect tox
(Eq. D.53).

(f(x))g = (4% (8-%)),, (D.47)
= (4% —4¢) (D.48)
=40(%)q —4(X)q (D-49)
= (Ox (4% (86— xt))> (D.50)
:< (40% — 47)),, (D.51)
= (48-12¢), (D.52)
=40-12(%), (D.53)

Energy from the SDE

The energy term related to the stochastic differential equation (D.46), is:

Eead) = l< ~000)) S 100~ 0. 04))) (D.54)
< ~0L00))(Fx) —aL(x)) ") (D.55)
Gt
1 2
=50 < 4Xt 8-x7) atXt+bt)> > (D.56)
G
2
< 4% — 4+ 8k — bt>> (0.57)
Gt
2
% < 4e+a{ )X — S — bt> > (D.58)
Gt
— 50 2{ (o —d-n)%)_ (D.59)
%0 2 (¢ — 4o — e — 4ad +16¢ + 4 — o +4bos +bF), (D.60)
%0 2 (¢ — 8o — 2brenx + 166 + 8¢ +bf) (D.61)
1

N |
Q

2 (@R, 8 (), — e (x)g +160), + 80 () +1F)  (D.62)
where in step (D.59) is introduced, for simplicity of the presentation, theblaria = (46 + &)
and all the higher order Gaussian momefx$,, () (¢)q (X')q and (). are given in
Appendix F.

Gradients with respect to the marginal means and variances
This section presents the derivations of the gradien&gfwith respect to the marginal means

and variances. The derivative with respect to the marginal me#computed first, followed by
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the derivative with respect to the marginal variasce

Gradient of EggeWw.r.t. m:

O Esadlt) = O | 302 08) ~ 8 () — 200 )g +1606)+80 () +1F |
(D.63)
_ %G*Z (0 (%) 80T (), — 200 + 160 (), + 8070 (),
(D.64)

Gradient of EggeW.r.t. s:

eEsadt) = s | 302 08) 80 () ~ 21 () + 1608 + 800 (00), 482 |

(D.65)

_ %0*2 (ctzmst () —8ars (), +1605 (), +8tx0g <xt3>q[> (D.66)

with all the derivatives of the higher order Gaussian moments with respegtdads;, such as

O () O (%) O () O (60),, Os () s (), Os (), and D ()., again
provided in Appendix F.

Gradients with respect to the variational parameters

Following a similar methodology, as shown for the OU system, the gradieriiggeiv.r.t. the

variational parameteis andb; for the DW system, are derived using Equations (D.49) and (D.53).

Gradient of EggeW.r.t. the offset parameterhb;:

O Esadt) = 072 ({F(4)) g+ (X)g 1) (D.67)
=072 (48.(x)g — 40+ (X)g — bt (D.68)
=072 ((48+a) (4)q — (%) — ) (D.69)

Gradient of EggeW.r.t. the linear coefficient &:

TaEsadlt) = 02 ({Tf (%)) g+ ) & — O Esaelim (D.70)

=0 2(48-12(¢), +a) s — OnEsadt)Mm (D.71)

Gradients with respect to the (hyper-) parameters

The estimation of the (hyper-) parameters, for the DW system, includes tti&l plerivatives of

EsqeWith respect td® ando?. These are given by:
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Gradient of Eggew.r.t. drift parameter 0: As shown earlier the drift function of the DW process
(see Eq. D.46), has only one parameter. The classical approachite tter necessary partial
derivative ofEsqeis simply to differentiate Equation (D.62) w.r@.parameter. However a simpler
approach is to use the general expression of this gradient as shovppandix A and then make

the appropriate substitution for the model that is studied. That leads to theiftdlexpression:

Tosadt) = ((F0x) ~au(x)" 57 (of(x) ) (D.72)
== (0gf(x) (F(x) —gL(xt))T>q (D.73)

2 (4% (48% — 4 +ax — b)), (D.74)

= 02 (160% — 16 + dax¢ — Abyx; ) « (D.75)

— 4072 ((40+a)x — 4 —bix),, (D.76)

=402 ((40-+a) ()~ 4(¢)g ~br (X)q) (D.77)

where we have make use of the fact that the derivative of the DW dnifttion with respect to the

drift parameter is given by:

Oof(x) = 0o (4%(8 — X)) (D.78)
— g (46% — 4%) (D.79)
= 4% (D.80)

Gradient of EsgeW.r.t. the system noise parameteo?:  Although the computation of the partial
derivative ofEggeW.r.t. 02 is straightforward, here is followed a similar approach as above (using
the general expressions of the gradient) to demonstrate the ease ofticgrgystem specific

expressions from the general multivariate variational framework.

CisEsadt) = — 5= {106 - 006 (F0x) 0. (x) ) 52 (D.81)
50 2{((40+ 243 -b)%) o (D.82)
= —%0*4 (¢ — oo —broox — Acog + 16 + 4boe — broox +4bog +bF)

(D.83)
—%0’4<Ct2x12—80txf—2thtXt+16X16+8th13+bt2>ql (D.84)

= 20 (@ 0@)y 80 () 200 (x)g +1608), +80 (), +5¢) (D.85)

where the variable; = 40 + &, is used to simplify the expressions.
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Optimal initial values of the variational parameters

In a similar fashion to the OU system, the initigu'esséesfor the all thediscretizedvariational
parametersik) andb(k) are given by Equations D.38, after having substituted the Equations

(D.49) and (D.53) for the DW system.

Initial linear parameter:

a(k) = — (Oxf(x)) g +20%9(K) (D.86)
= —40+12(x’), + 2074 (K) (D.87)
= —40+12(m(K)? +s(K)) + 204 (K) (D.88)

and since fok = 0 the Lagrange multiplieg>(0) = 0, the expression becomes:

a(0) = —48+12(m(0)? +s(0)) (D.89)

Initial bias parameter:

b(k) = (f(x))q +a(k) xm(k) — G°A(K) (D.90)
= 40(%)q — 4(X)q + (—48+12(m(K)* +8(k)) +20%4(K)) xm(k) —0?A(k)  (D.91)
= 40m(K) — 4 (m(k)3+ 3m(k) = s(k)) — 48m(K) + 12m(k)* + 12m(K) * s(k)
+20%4) (k) * m(K) — 62X (k) (D.92)
— 46m(k) — 4m (k)2 — 12m(K) % (k) — 46m(k) 4+ 12m (k)2 + 12m(K) = s(k)

+ 2024 (k) * m(k) — a2 (K) (D.93)
= 8m(k)®+ 2024 (K) * m(K) — a?A(K) (D.94)
(D.95)

where the higher order expectatio§), and(x’),, have been expanded to make the derivations
more complete. Also the symbol “*” operates element-wise multiplication, betweewewators
of the same size. Since fér= 0 the Lagrange multiplierg>(0) = 0 andA(0), the expression

becomes:
b(0) = 8m(0)® (D.96)

Here an obvious obstacle arises since to initialize all the discrete param@easdb(0), one
needs an initial guess for all the marginal means and variancem(i0g.ands(0)). To overcome
this problem a simple solution is to use a Gaussian process regression “sm@Bismussen
and Williams, 2006), on the observations, to get an initial estimate of the margiehs and

variances and then use these values to initialize the variational parameters.
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D.3 Lorenz '63 (L3D) system equations

The final system for which the required equations were computed andllyicahe stochastic

version of the three dimensional chaotic Lorenz '63 (L3D). Becaussetlderivations demand
many computations an effort is made to emphasize more the way the equatidesiezd, rather

than the detailed individual steps. Initially, the systems’ equations will beigiedvin detail and

subsequently they will be decomposed to several parts that will help tabiity of the presen-
tation.

The time evolution of the L3D system is described by the following stochastierdiftial

equation:
oyt — %)
dx¢ = | px—w —xz | dt+ »1/2 dw; , (D.97)
XYt — Bz

wherex; = [ % z] " € 03 in the state vector representing all three dimensiérsjopB]’ € 0s,

is the drift parameter vecto¥, € [0°*3 is a diagonal covariance matrix ang € 2.

Energy from the SDE

Initially we recall the expression that gives the energy term related to tlie(S& Appendix A),

that is:
Esadt) = 3 (100~ 0L06) ZH100) ~ () (0.98)

The drift functionf(x;) of this system is given by:

oYt — %)
fx)=| pxx—yi—%z | - (D.99)
XYt — Bz

while the linear approximatiog, (x;) is given by:

g (X) = —AtXt + by (D.100)
A1 Az Az X by

== A A Az | X|Yy | +| b (D.101)
| As1 Asz2 Ass z b3

t t t

Ar1X+ Ay + A1z — by
=— | AxaX+Axy+A~Asz—hy | (D.102)
| AsiX+Agzy + Agsz— b3
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where the (continuous) dependency on time 't is denoted by the subseriite matrix and
vectors. Combining Equations (D.99) and (D.102) we get the necessatyrv; = (f(x;) —
oL(Xt)), as shown in Eqg.(D.104).

a(y—x) AriX+ Ay + Az — by

Vi= | px—y—xz | + | Apx+ Ay +Axz— by (D.103)
xy—Bz | Az1X+ Azzy + Azzz— s
oy — 0X+ A11X+ A1y + Agzz— by

= | pPX—Y—XZ+ Ax1X+ Aoy + Agzz— by (D.104)

Xy— Bz+ AgiX+ Agoy + Agzz— bs

At this point the initial energy expression Eq.(D.98) becomes:

1/ 1o
Esde(t):§<vtT > 1vt>qI (D.105)
1
5 0 0
1
:2<vtT 0 35 0 Vt> (D.106)
0 0 3
Gt
1101
=5 [% Lt (v, (D.107)

(0y — OX+ ArX+ Agy + Arsz— by )
(S 5 (] (px—y— X2+ Aorx+ Aggy + Az — by)? > (D.108)
(Xy_ BZ+ Az1X+ Azoy + Agzz— bg)z

NI =

t g
((0y — oX+ Apax+ Aroy + A1az— b1)2>qI
(5t x {(pX— Yy —XZ+ Ap1X+ Agzy + Apgz — b2)2>qt ,  (D.109)
((xy—Bz+ Agix+Agzy + Agsz— b)) |

wherez,, >y andZ; represent the noise on each separate dimension of the system andatee squ

1
2

of the vectorv;, as appears in step (D.107), operates element-wise square, as stesvim $éep
(D.108).

The next step is to expand the squares in the above expression andednemequired expec-
tations. This requires some straightforward but tedious calculations, wémsclt in some rather
long mathematical expressions. Here such presentation is avoided aeduhiag expression of

the Eggeis given more compactly by:

1
Esadt) =5 <Zx‘ ' ((0y — ox+ Aux+ Ay + Az — bi)?),
+ 2, H((Px— Y = X2+ Aorx+ Aoz + Aogz— b)?)
+3;1 ((xy—Bz+ Ag1X+ Agoy + Agaz— b3)2>0|t > , (D.110)

where the dependency on time 't' has been omitted of notational convenience
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Gradients with respect to the marginal means and variances

Once the complete expressiontf;c has been expanded then the gradients with respect &amd

S can be computed.

Gradient of Egge W.I.t. the marginal mean vector m: Since the marginal mean vectoy
consists of three variables (i.en; = [my m, my;"), in order to computély, Esqdt), one has to

compute the partial derivatives Bfge(t) with respect tamy;, m,, andmy as shown below.

0Esge
omy

O Esadt) = %E—wd : (D.111)
0Esde
om, t

where the sub-script 't’ indicates time. The partial derivatives are ctéealpas follows:

e Partial derivative oEgqdt) with respect tam;:

OEsadt) 1 0
oMy, 2 0my;

+ 2;1 <(pX— Y — XZ+ Ap1X+ Axoy + A3z — b2)2>q[

<Z;1 ((oy—0oxX+ Ar1x+ Arpy + Arsz— b1)2>qt

+2,H((xy— BZ+A31X+A32Y+A332—b3)2>qt> (D.112)

_ 1 -1 0 2
_2<ZX m<(0'y—0X—|—A11X—|-A12y—|—A13Z—bl) >qI

9
+ Z_lm ((PX—y = X2+ AgrX+ Agy + Aogz— bo)?) |

0
—I—Z_lm <(Xy— BZ—I—A31X+A32y—|-A332—b3)2>qt) (D.113)

e Partial derivative 0Esqe(t) with respect tany,:

OEsgdt) 1 0
om,, 2 0my,
+ 5, ((PX— Y — XZ+ Ag1X+ Agay + Agsz — b2)2>q[

<le ((0y — ox+Arax+ Ay + Arsz—br)?)

+2,H((xy— BZ+A31X+A32y+A332—b3)2>qI> (D.114)

1/, 0 2

:2<ZX THM<(0-y70-X+A11X+A12y+A1327bl) >Ch
4, 0

+2, lﬂ {(Px—Y—XZ+ Ag1X+ Ag2y + Apsz— b2)2>O|t

)
+z;1H {(xy— Bz+A31x+A32y+A332—b3)2>qt> (D.115)
t
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e Partial derivative 0Egqt) with respect tany:

Oy, 20my,

<z;l {(oy — OoX+ Ar1X+ Arzy + Arsz— bl)2>qt

+ Z;1 <(pX— Y — XZ+ Ap1X+ Axoy + Aozz — b2)2>q[

+2,H((xy— BZ+A31X+A32y+A332—b3)2>qt> (D.116)

1 0
= > <leamzt <((jy O0X+ Ap1X+ A1y + Agzz—by) >

.0
+3, 1aT1Zt ((Px—y—xz+ Aorx+ Aggy + Agiz— b)) .

+2 Xy — BZ+A31X+A32Y+A332—b3)2>qt> (D.117)

0
-1
Z arnZt <(

Gradient of Egge W.r.t. the covariance matrix §: In a similar manner the computation of
Os Esqdt), requires the partial derivatives Bgdt) with respect 15, Sy, Sz Syyr Sz and Sy

The marginal covariance matr, can be schematically represented as:

S Sy Sz
S=| S« Sy S| (D.118)
Sx Sy Sz

t
whereS € [ represents the variance on thdimension S,y € [ is the co-variance between the

x andy and sub-script 't’ indicates time. Here the fact that magixs symmetric reduces the

9 Esd E(t

number of partial derivatives from nine to six (i.@% ). The gradient is given by:

OEsde OEsde  OEsde
0Sx 0SSy  0Sq
OsBsadt) = | G2 G2 =% (D.119)
aEsde aEsde aEsde
Sx 05y 05, Iy

e Partial derivative oEggt) with respect tS:

OEsgdt) 1 0 _

+2, 1 ((Px—y = X2+ Porx+ Aoay+ Az — b2))

+ 3, 1 (xy— Bz+ Agix+ Agoy + Agsz — b3)2>q ) (D.120)

= (522 {(0y — oX+ Apax+ Ay + Arsz— by)?)

2 X aS(x 11 12 13 1 o

+Zylas( ((PX— Y= X2+ Aorx+ Aggy+ Aosz— bp)?) |
0

+3, 1 ((xy— Bz+ Agix+ Agzy + Agaz— bg)?) ) (D.121)
0Sx G
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o Partial derivative oEsqdt) with respect td5y:

OEsgdt) 1 0
0Sy  20S,

+ 3, (X —y — X2+ Porx+ Pozy + Aosz— bp)2) .

<Z;l ((oy — X+ Ar1X+ Arzy + Agsz— bl)2>qI

+2,H((xy— BZ+A61X+A32Y+A332—b3)2>qt>
1 0
= <leas( <(Gy—0X+A11X+A12y+A132—b1)2>
y

{(pPX—y —XZ+ Ap1X+ Agoy + Apsz — b2)2>q[

G

+Zy as(

+3 Xy — Bz+ AgiX+ Azoy + Azzz— b3)> )

0
Z as(y<(
e Partial derivative oEgqt) with respect tdS,;:

OEsadt) 1 0
0S:  20Sq

+ 2, (P —y = X2+ Apix+ Ay + Apgz— o))

<Z;l ((0y — X+ Ar1X+ Arzy + Agaz— bl)2>qI

+ 2, 1 {(xy— Bz+ Agix+ Agpy + Agaz— bs)2>qt >

1 ]
=z z;l {(0y— 0X+ Aux+ Ay + Araz— by)?)
0S¢ %

+Z_ <(px—y—xz+A21x+A22y+A232—b2)2>qt

yas(

+3t
‘ 63<z

<(Xy— Bz+ AziX+ Agzy + Agaz— b3)2>q[ >

e Partial derivative 0Esqe(t) with respect td5,y:

OEsgdt) 1 0
oSy _263,),
+Z;1<(pX—y—XZ+A21X+A22y—|—A232—b2)2>q[

<le ((0y— ox+Avax+ Ay + Arsz—br)?)

+3;t ((xy— Bz+ Agix+ Agzy + Agsz— b3)2>q[ >

1/, 2
T2 <ZX aS/y<(oy—GX+A11X+A12Y+A13Z*bl) )a
+3, E<(pry—XZ+A21X+Azzy+A23Z*b2)2>qt

+3;t

z 685, ((xy—Bz+ As1x+ Agy + Agaz— b:«;)2>qI )
y
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o Partial derivative oEsqdt) with respect td5;:

OEsqé(t) 1 0
aSyz 2685,2
+ 3, (X —y — X2+ Porx+ Pozy + Aosz— bp)2) .

<Z;l ((0y — X+ Ar1X+ Arzy + Arsz— bl)2>qt

+2,H((xy— BZ+A€1X+A‘32y+A332—b3)2>qI> (D.128)

1 5}
= — <Z;10%Z <(0y— OX~+ A11X+ A1y + A13Z— b1)2>0h

Z_

+2,

<(px— Y — XZ+ Ag1X+ Agoy + Apaz — b2)2>q[

as/Z<(><y— Bz+ AgiX+ Agzy + A33Z—b3)2>qt> (D.129)

e Partial derivative 0Eggt) with respect t&,,

OFusdt) 10
0S; 205
+ 2,1 ((PX—y = X2+ Agix+ Ay + Agsz— o))

<Z;l <(cry— OX+ A11X+ Aoy + A132— bl)2>qt

+ 3,1 ((xy— Bz+ Ag1xX+ Agoy + Asaz— bs)2>qI ) (D.130)

1 0
— <leasz {(oy— X+ Aux+ Ay + Araz— y)?)
zZ

((px—Yy —XZ+ Ag1X+ Aoy + Agaz— b2)2>q[

G
—|—Zy GSZ

43,1 E (Xy— Bz+ Agix+ Agzy + Azaz— b3)2>qt ) (D.131)

Gradients with respect to the variational parameters

The general expressions of the gradientEgfg with respect toA; andby, are given in Appendix

A as follows:

T Esalt) = =71 ((F(x0))g, +Ac ()~ x) (D.132)

OaEsaelt) = =7 (O f(x0)) g +At ) & — O Esadt)m/ (D.133)
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Equation D.132, requires the expectation of the drift function. This isngagefollows:

oyt — %)
<f(xt)>q=< PX; — Yt — XeZ > (D.134)
XYt — Bz o
[ (ol —x))q
= | (P4 =Yt —X%z)q (D.135)
(XYt — Bzi) g

((Yt)g — (%))
= | PX)q — W) — XiZt)g (D.136)
(XtYt)g — B(2)g

o(my —my)
= | pmx—m,—Sg—mm; | (D.137)
Sqy+ Mkmy — B,

t

wheremy, m, andm, are the marginal means on each dimension fe= [m, m, m;;") and also

we have used the identi(mzoq = S+ mym,, whereS,; is the covariance betweerandz
Furthermore Eq.(D.133) requires the expectation of the Jacobian raktf{x: ), with respect

to the Gaussian approximatigpn This is computed as:

-0 o O
<Dxtf(xt)>qt—< p—z -1 —x > (D.138)
Yo % B .
[ -0 o 0
0@y 1 b0, (0139
Mg (X)q B
| -0 O 0
=l p-m -1 —m | . (D.140)
m me =B ]

with 't" denoting dependency on time.

Gradients with respect to the (hyper-) parameters

The (hyper-) parameters that need to be estimated in the three dimensiatessio Lorenz
system is a set of six parameters, three in the drift veter[o p B]" and the diagonal three
elements of the system noise covariance maiiXi.e. 2, 2y and;). Below it is shown how the

gradients oEggeWith respect to these parameters can be computed without approximatios erro
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Gradient of EggeW.r.t. drift parameter 6: Starting with the drift vector parameters, we recall

that the general expression given in Appendix (A), is:
ToEsaelt) = () ~ 0L (04)) " 57 (Dof () (D.141)

In order to proceed the gradient of the drift function with respect to #rameter vector

(Oef(xt)) has to computed. As shown below this is given by:

o(o(y=x))  9(aly=x))  9(a(y=x))
ac ap op
Def(Xt) _ a(pxgé/—xz) a(pxgg—xz) a(pxgé/—xz) (D.142)
o(xy—B2) o(xy—B2) o(xy—B2)
dc ap op t
[ (y=x) 0 O
= 0 x 0 |, (D.143)
0 0 -z

where the sub-script 't' denotes time dependency. Using the result Brguation D.143, the

derivation of the necessary gradient yields:

ToEsadlt) = ((F(x) — 0(x))” 2-1(Def(xt))>q (D.144)
(50 0] [wm-w 0 o
< 0 3, O X 0 x O > (D.145)
0 0 3 0 0 -a|
[ Sly-x) 00
< 0 5, % 0 (D.146)
I 0 0 -3z .
vlz
:< voZs 1 > (D.147)
—V32, 1z -
Z (V1% (Yy—X))
= vz*x ; (D.148)
V3>l<th .

where the vectov; = [v1 V2 v3] | as defined in Equation (D.104).

Gradient of EggeW.I.t. Noise covariance matrix>: Similarly, the gradient oEsqeWith respect
to the system noise covariance can be computed by using the general naéivexpression.

However, things here are more simple because as one can see frotioEDal50), all the
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necessary expectations have already been precomputed in previpsisheiece there is no need

for additional computational burden.

UxEBsadt) = —%2*1 <(f(xt) = 0L (x) (F(xt) — gL(xt))T>qt ! (D.149)

_ 1 -1 T -1
=—3% <vtvt >qt > (D.150)

Optimal initial values of the variational parameters

Unlike the univariate systems where the initial values for the altiteeretizedvariational param-
eters could be represented in compact notatioa Rsandb(k), here for the multivariate Lorenz
system the notation is slightly alteredAg(k) andb; (k), with subscriptt’ denoting discrete time
instant, whereas the indel represents algorithmic time in the optimisation procedure (i.e. num-

ber of iterations).

Initial linear parameter:  The general expression for the linear parameter at time 't’ is given by:
Ar(K) = — (Ox (X)) + 22T (K) (D.151)

and using Equation (D.140), the initial iteratika= 0 becomes:

AL(0) = — (D (X)) g (D.152)
-0 o 0
—— | p=m, -1 —m, (D.153)
m me B .
o -0 O
=l m-p 1 my (D.154)
My -me B

whereA;(0) € 0%*3, In order to initialize the variational linear parameter one must have an initial
set of values for the marginal meamg{(k = 0), my (k = 0) andmy (k = 0)). This problem can
be solved by interpolating the observations with cubic splines (on each doneseparately), or

using any other method that will produce a smooth approximation of the mean path

Initial bias parameter: Similarly the general expression for the offset parameter at time 't’ is

given by:

bt (K) = (f(Xt)) g + At(K) * (k) — XA (k) (D.155)
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The expectation of the drift function for the L3D is given by Equation ()13Hence the

initial iteration,k =0 is:

bt (0) = (f(X))q, + At(0) + my(0) (D.156)
[ o(my—my) ] [ o -0 O my
= | pmx—my—Sz—nmym, Tl m-p 1 x| my
Sy+mmy—pm; | | My oM B o ™ ko
| | (D.157)
[ omem) | [ omcm)
= | pmy—my—Sg—mm, + | m(m—p) +my+mm, (D.158)
Sy +mam,—pm, | —mamy, —mamy +fm; |
o
=] mm;— S (D.159)
Sy — My,

L t, k=0

whereby (0) € 02 andmy (k = 0), my (k = 0), my (k = 0) are given as above for the initial linear
parametei(0), while S,(k = 0) andS,y(k = 0) represent covariances. To obtain these covari-
ances is not as trivial as for the approximations of the marginal mean iHsrassumed that
these values are zero at the beginning of the optimisation process. tis@r#itat assumption has

minor effect in the performance of the algorithm at convergence.

D.4 Approximations using the unscented transformation

An alternative method for obtaining the necessary expectations, for tiatienal approximation
framework, is presented based on thescented transformatiofyT) (Uhlmann, 1995). As the
previous section for the L3D revealed, the analytic expressions for avamigtie system requires
many computations which even when available there are prone to numeraral @omputational
and derivations). The approach presented here makes the varialgoathm more generic,
although that comes with the cost of introducing additional approximatiomnserro

The presentation of the equations follows a similar approach as seen iretheysrsections,
however all the mathematical expressions will remain at a higher-level witiwng into detail
about system specific drift functions and parameter vectors. In thisavggneral approach will
be given that can be applied to any system as long as the drift functiofinedspecifically. This
method was applied successfully to the three and forty dimensional stochastitz systems
(L3D and L40D). For the L3D, where the analytic expressions werealadable the compari-

son between the two versions showed good match, although the unscansfdrination needed
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Appendix D ANALYTIC EXPRESSIONS OF THE SYSTEMS STUDIED

careful tuning.

Energy from the SDE: Initially, the energy related to the stochastic differential equation that

describes the stochastic process is given by:

Esadt) = %((f(xo —0L(x)) " EH(F(x) fgL(xt))>q[ (D.160)

Settingz; = (f(x;) — gL (X)) and using the fact the the system noise coefficient matrix diago-

nal, the above expression can be rewritten as:

1
Esqdt) = = (z/ &1 D.161
adt) = 5 (272 (D.161)
1
=3 (S5 5 (Z )y (D.162)

whereZy, >y andz, represent the noise variance on each separate dimension of the sydttra a
square of the vectar, as appears in step (D.162), operates element-wise square. Oncettire ve
Z? is constructed as a function and passed to the UT an approximation to theprataion will

be provided byE{Z} ~ (2f),,-

Gradient of Egge W.r.t. the marginal mean vector m: To compute this gradient we need to

write the energy functioksge as an integral and then differentiate with respecenhto

O Esalt) = O [ 3 (1000 ~ 0. 060) =100 -0 (x)), | (D.163)
= 50m, [[(10x0) ~00(x)) "= H(1(%) — 0. (x0)ax (D.164)
— 5 /1000~ 000) = H(F(x) — 6. (%) Emlx (D.165)
= 5 [ 100 ~0(x0) "2 HIx) L) Hx - moalx)dx  (D.166)

:5<(f( ) —0oL(x)) =" 1(f(xt)_gL(Xt))S[_1(Xt_mt)> (D.167)
G
— 5 ({100 - 0.00) =X (x) 5L (x))S ),
- % ((f(x0) — 0.00) B0 — ax)) Sy (D.168)
O
(@SS ~Eudt)S m, (D.169)
2 !

where the vector; is a shorthand notation fdf(x;) — g.(X;)) and for the Gaussian distribution

a(xc|me, S), we have usedlm, q(x) = S *(xt — my). This is proven as follows:
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Appendix D ANALYTIC EXPRESSIONS OF THE SYSTEMS STUDIED

Proof:
O, () = O, [ (2192 | § 220 m0" om0 | (D.170)
= (2m)2|S| 2 (Dmte*%(xﬁmtm*l(xfmt)) (D.171)
= (2m)~2|g | ze 20 M) S o, (—i(xt —m) S (x - mt>> (D.172)
1
= q(Xt) <—2(—25t_1(xt — mt))> (D173)
=S (% —my)q(x) (D.174)
Having precomputed thEsy(t) as shown in Equation (D.162), the new approximate expecta-

tion that one has to computefi] z' £ 125 x} (see Equation D.169).

Gradient of Egge W.r.t. the marginal covariance matrix S;:  For the gradient oEgqe with
respect tds, a similar procedure is followed. FirBsqeis expressed as an integral and then the

requested derivative is computed.

Us Esadt) = Us, B <(f(><t) —oL(x)) ' = (f(x) _gL(Xt))> } (D.175)
O
}Ds <(f( ) —0L(Xt)) 2_1(f(xt)—gL(Xt))>ql (D.176)
=5 / (%) — oL (%)) " E7H(F (%) — g (%)) O a(x ) dx; (D.177)
2/( —aL(x) "= H(F(x) — 9L (%))
<5 (8- mot - mo "S- 5 ) atx) (D.178)
= %<(f(xt) —oL(x)) "2 HE(x) — 9L (%) Sk — M) (x¢ — mt)TS[‘l>qT
_%<(f(xt)_gL(Xt»TE_l(f(Xt)—gL(Xt))> S (D.179)
O
= %<(f(xt) — gL (%) T2 (%) — gL (X)) ST (X — M) (% — mt)TSt—1>qt
1Esole(t) (D.180)
= %<Zt Sz S 6 — my) (% — mt)TS(1>q - %Esde(t)s*l (D.181)

Hence the new expectation that has to be approximated with the ﬁ{z{%E*lztS[‘l(xt —

m¢)(x —my) " ST 1}, Furthermore the gradients q(x;) (see step D.177), is provided below:
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Proof:
Osa(xt) = Os ((ZH)_%\Sr|‘%e‘%("t‘m‘>Tsfl(X“mt>> (D.182)
= (2m)~
=(2m) 2 <— {Sﬂ*zs{ Lo 30x—m) S xe—my)

N\D

(DS[‘S[‘ 2@ 1 (x—my) S1(xrmt)+‘St’f%Dstef%(xtfmt)Tst—l(xﬁmt)) (D.183)

NO

S Ee Hemo TS Hemo g <_;(Xt —my) 'S (% — mt)> ) (D.184)
— (2m) 2 (‘\S|zs 13m0 TS Hx-m)
n %, S| be Boem0 S Toxmy (s;l(xt —my) (X — mt)TS(1> > (D.185)

D 11 Tgl 1
= (2m) F|§| Fer B0 S (S o —my (x - my) TS -5 )

(D.186)
lia1
= (ST —mo)(xe —m) T 1) Sa(x) (D.187)

with | € OP*P the identity matrix.

Gradient of Eggew.r.t. the (hyper-) parameters® and X:  The general multivariate expressions
of the gradients with respect to the (hyper-) parameters are given etieqyD.189), for the drift

parameter vector
ToEsadt) = ((1(x) = 00(x) "= (of () (D.188)
= (=71 (0f(x) (0.189)
e
and in Equation (D.191) for the system noise matrix
OsEsadt) = —%2‘1 <(f(xt) — oL (%)) (f(xt) — gL(xt))T>qt >t (D.190)
= —%2‘1 <ztth>qT =t (D.191)

It is obvious from Equation (D.189), that before computing this expectatiith the UT ap-
proximation, the gradient of drift function with respect to the drift paramseteust be computed
in advance for the system studied. On the contrary the gradient withctespihe system noise
requires no additional computations since the required expect(&ttiz@qt has already been ap-

proximated when computing the energy tdfg. (see Equation D.162).
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Approximate solutions of the

moment equations

Chapter 4 shows that the dynamics of the proposed linear approxingptiorthe true posterior
processp; can be described by a set of ordinary differential equations; onthéomarginal, at
time 't’, means Eq. (4.12) and one for the variances Eqg. (4.13). The soldithe above ODEs
is provided by a first order Euler discretisation scheme with a small time stepde=g0.01), to
achieve good accuracy. Chapter 6 hinted that the approximation of ta¢imaal parameteré
andb; with local polynomials can further improve the precision of the ODE solutioregamyying
higher order integration schemes (such as Runge-Kutta 2'nd ordenever, the ODEs must still
be discretised and solved iteratively, which reduces the applicability olgoeithm to very high
dimensional systems.

This Appendix provides approximate solutions to the moment equations for trginala
means and variances and shows that under the current variatiom&woak, closed form solu-
tions for Equations (4.12) and (4.13) are not possible. Neverthelgssefwork in parametrising
and making further assumptions about the linear variational paradeteight provide more ef-
ficient ways to solve the moment equations. To ease the presentation ofidkerfg derivations

only univariate systems are considered.
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Appendix E APPROXIMATE SOLUTIONS OF THE MOMENT EQUATIONS

E.1 Marginal means

The equation that provides the marginal mean (Chapter 4) is given by:

‘J";‘(tt) — _at)m(t)+b(t), m(to) = mo. (E.1)

with mg € O denoting the initial condition ana(t), b(t) € O the time dependent linear and offset

variational parameters.

Set:
1
Qt) = — /t a(kdk, with (E.2)
dQt)
S =—a). (E.3)

Then differentiatingn(t) exp{ —Q(t) } w.r.t. the timet, yields:

S (m(t) exp{—Q(t)}) = Mty exp(~Q(D)} + mit) T expl ~Q(D)} (€
— e} - m) S e Q) (€5
— m(t) exp{—Q(t)} + m(t)a(t) exp({~ Q) (E6)
~ (m0-+ma() ) expl-Q(0) E7)
— b(t)exp(~Q(1)} E8)

where?2YU — _a(t), from Equation (E.3), anth(t) denotes the time derivative.

Integrating both sides of Equation (E.8) yields:
t:;k( (k) exp{—Q(K)}) dk— /b ) exp{—Q(K) }dk. (E.9)
The first integral on the right hand side of Equation (E.9) is:

[ S MR exp- QK }) k= [m(k exp QU (E.10)

— m(t)exp{—Q(t)} - m(to)exp{—Qlto)}  (E.11)

=1

=m(t)exp{—Q(t)} —my, (E.12)

wherem(tg) = mp and the exponentQ(t) for t = to becomes-Q(tp) = tg‘) a(k)dk= 0, therefore
exp{0} = 1. Hence:

M) exp(—Q(1)} o = bk expf~QU} k. (E.13)

Finally, multiplying both sides of Equation (E.13) with €)@(t) } and then re-arranging results:

( (to) + / k) exp{—Q(k }dk) exp{Q()} . (E.14)
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Appendix E APPROXIMATE SOLUTIONS OF THE MOMENT EQUATIONS

At this point one can make use of the polynomial approximatioregtofandb(t):

at' and b bt . (E.15)
-2, -3,

whereM,, My, € N denote the order of the polynomial approximationd@r andb(t) respectively.
Here, unlike the presentation in Chapter 6, the order of the polynomials damid variational
parameters is allowed to be different to provide a more general presentatio

To compute the exponential ef@(t)} we make use of the above result:

t t
—/ a(k)dkz—/ a(k)dk (E.16)
to to
/t Ma .
~— akidk (E.17)
to i;)
Ma t
z_%a t Kdk (E.18)
Ma kl+1
Zja. [I +J (E.19)
a tl+l tH—l
ga[ . (E.20)
which leads to:
Mo t|+1 tH—l
exp{Q(t) } ~ exp{— Zbai i }. (E.21)
The second integral on the left hand side of Equation (E.9) is:
/ (k) exp{ —Q(K) Hdk ~ / "Bk exp{—Q(k) 1k (E.22)
1o to
Mp )
~ t%bik' exp{ —Q(k) }dk (E.23)
to =
Mp t
z_%bi / K exp{—Q(Kk) }dk (E.24)
i J+1_tl+l
~ %b. . k exp{ Z}aj T Hdk. (E.25)

Hence, the final expression for the marginal means becomes:

-tj+1_tj+1

Ma
dk ) exp!{ — a; 70
} > p{ J; | i j +1

Mp t Ma

~ ( my+ b-/k‘ex an

(moe 3o [ o3,

Setting the initial time instant tip = 0 yields:
a |:kn+l

Mp t |
x(nb+i;bi/cjkexp{zoan 1

Int1

n+1_ ¢+l
i V. (E.26)

n+1

]}dk)exp{ zoa, J“jl]} (E.27)

This equation, to the author’s best knowledge, does not have a closadblution because in-
tegral “Int1” cannot be solved analytically for arbitrary valueshf and M, (Gradshteyn and
Ryzhik, 2007).
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E.2 Marginal variances

In a similar way the equation that gives the marginal variance is given by:

ds

= —2a5+0%, s(to) =% (E.28)

with 5o € 0 denoting the initial condition and? € [ the (constant) system noise variance.
Setting:

2(t) = —2 [ a)dk  with d(zjit)——Za(t) (E.29)
to

and working the same way as in the previous section the following equationvedte

t
S(t) ~ <50+02 / exp{—Z(k)}dk) exp(Z(K)} , (E.30)
to
which leads to the final expression for the approximate marginal variances
a kJ+1_t(J)+1 Ma ti+1_ti+1
exp{2)) a dk|e 2 —_— E.31
S(t) ~ (mo/toxp{;J k) expl—25'a |- ) (@D

and fortg = 0 the expression simplifies to:

s(t) =~ <so+0 / exp{2 Z.iaj [k +1]}dk) exp{— Zzza, [It:ll] (E.32)
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Gaussian moments and

related derivatives

This Appendix provides the uncentered moments, up to and including 8'dér,afla univariate
Gaussian random variabke, wherem ands are respectively the marginal mean and variance at

time't'.

Uncentered moments:

()q =1 (F.1)
(g =m (F.2)
<Xt2>q _ m[2+& (F.3)
(¢)q = M +3ms (F.4)
(4)q =+ 6mfs + 357 (F5)
(%)q =+ 10nPs + 15 (F6)
() = P+ 15m's + 4507 + 1587 (F.7)
({)q =M +21nPs + 10517 + 108m s’ (F.8)
() q = M +281Ps + 210M{'s’ + 42017’ + 105 (F.9)
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Appendix F GAUSSIAN MOMENTS AND RELATED DERIVATIVES

From here, it is easy to derive the related derivatives with respect todinginal means and

variances at each time 't’.

Derivative of (x), w.rt. m:

Om ()q = (F.10)
Om (4 >q1 (F.11)
Om () g = (F.12)
O <x§>q1 =3 m[2+s¢ (F.13)
Om ()¢ = 4n% + 12ms; (F.14)
Om () = 5N +30M¢s + 15¢7 (F.15)
Om (X)q = 6N + 60Mps; +90ms’ (F.16)
Om (4 )q = 7mf + 105mf's + 31507S’ + 10557 (F.17)
Om () = 8nY + 1681Ps: + 8407’ + 840M (F.18)

Derivative of (x), w.rt. s:

Os ()g =0 (F.19)
Os (X)q =0 (F.20)
g (%) =1 (F.21)
Os () = 3m (F.22)
Os (X')q = 6(Mf +) (F.23)
Os () = 1007 + 30ms; (F.24)
Os (%) = 15+ 90nYs; + 455 (F.25)
Os (4 )q = 217 + 2101s + 315ms’ (F.26)
Os () = 2877 + 4200’ + 12607’ + 4208 (F.27)
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