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Abstract
Estimating parameters in dynamical systems has many ap-
plications, yet remains a very challenging and relatively un-
explored task. The problem becomes even more difficult if
the system under consideration is non-linear and large in
size. Recent attempts have been based mainly on variations
of Monte Carlo methods or extensions to the well known
Kalman filter. In this poster we present the results of es-
timating parameters in stochastic dynamical models with a
variational approximation method, which is currently under
development within the VISDEMa project.

Introduction
Motivated by numerical weather prediction models [3],
within VISDEM, we are seeking a variational Bayesian
treatment of the dynamic data assimilation problem (see
Figure:1).
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Figure 1: A sequential overview of data assimilation.
Here m(·) represents the model, of the underlying

system, and h(·) is the observation operator.
In particular, within the VISDEM framework, unlike most
other methodologies, emphasis will be placed on estimating
unknown model parameters, as well as model state, thus
making full use of the observations in the posterior process.

Variational Gaussian process approximation
Our approximate inference is to the posterior measure over
sample paths. In the presence of observations this is given
by:

dppost

dpsde
=

1

Z
×

M∏
m=1

p(ym|Xm), (1)

where the likelihood is assumed to have a multivariate
Gaussian form:

p(ym|Xm) = N (ym|HXm,R), (2)

H ∈ <d×D is a linear transformation between the unobserv-
able process and the measured observations, R ∈ <d×d is
the observational noise covariance matrix and Z = p(Y ) is
the normalisation constant or marginal likelihood.
The idea behind our variational method [1] is to approxi-
mate the unknown distribution p(X) by another distribution
q(X) that belongs to a family of tractable distributions (e.g.
Gaussian processes). That is:

p(x) → dXt = fθ(t,Xt)dt +
√

ΣdWt, (3)
q(x) → dXt = g(t,Xt)dt +

√
ΣdWt, (4)

where both the above SDEs are described in the Itō sense.
Here fθ(·) is the drift function of the true process, g is a
linear function where g(t,Xt) = −A(t)Xt + b(t) ∈ <D,
with A(t) ∈ <D×D and b(t) ∈ <D being time-dependent
functions that need to be optimised. Σ is the system noise
covariance matrix and dWt ∼ N (0, dtI).
The aim is to minimise the variational free energy (or
equivalently the KL divergence) between the two processes,
which is defined as:

FΣ(q, θ) = −
〈

ln
p(Y,X|θ,Σ)

q(X|Σ)

〉
q

(5)

We achieve that with a smoothing algorithm.

aVISDEM stands for Variational Inference in Stochastic Dynamic Environmental Models.

Smoothing Algorithm
We illustrate the VGPA smoothing algorithm on the one
dimensional noisy double well system (see Figure:2).
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Figure 2: Example of VGPA algorithm. On the left we
have the double well system with three rather unlikely
transitions between the two wells. On the right we have
the result of the variational approximation compared
with a Gaussian process regression, at convergence.

We start with some initial values for the variational param-
eters A and b where we have discretised time. We then
propagate these values forward in time (forward sweep), to
produce the predictive mean m and variance S.
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Figure 3: Example of variational parameters, obtained
when the algorithm has converged.

Subsequently, we calculate the energy that comes from
both the SDE and the observations and then we propagate
the variational parameters A backward in time (backward
sweep), to produce the Lagrange multipliers (see Figure:4,
on the left). This ensures consistency with the constraints
imposed by the Gaussian nature of our approximate pro-
cess.
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Figure 4: Example of the Lagrange multipliers and the
energy evolution, obtained on the convergence of the

algorithm.
Finally we iterate the above procedure until the desired
level of convergence has been achieved (see Figure:4, on
the right).
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Figure 5: Profile of the free energy on the parameter
space, at convergence.

In Figure (5) we can see the “landscape” of the free energy,
on the parameter space, for a range of different values of
the forcing (drift) parameter θ, as well as the system noise
covariance matrix Σ.

Experiments - Results
Running a relatively large number of simulations on differ-
ent double well trajectories (see Figure:2, on the left) and
different realisations of every sample path, the aim of these
experiments was to test the robustness to different initiali-
sations of the variational approximation framework. In ad-
dition, the convergence properties of the algorithm were in-
vestigated. In all the results that follows the initial values
for the parameters were : θinit = 1.5 and Σinit = 1.5, while
the true values were θtrue = 1.0 and Σtrue = 1.0.
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Figure 6: Results of the residual and the optimal
marginal variance of the optimization process, as a
function of the observation density, at convergence.

In Figure (6) we can see the averaged results for the residual
and the marginal variance. The residual is given by:

I =

T∑
t=1

(mt − xt)
2

St
, (6)

where mt, St are the mean value and the variance at time t,
xt is the true value at time t and T is the discretisation set.
In addition to the state estimation, obtained by the smooth-
ing algorithm, as seen in Figure (2, on the right) we can cal-
culate gradients of the free energy [2], with respect to the
parameters that we want to optimise, resulting in an outer
optimisation loop.
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Figure 7: θ and Σ estimation, as a function of the
observation density, at convergence. The red horizontal
line corresponds to the true value of the parameters.

In Figure (7) we can see the results for the estimation of
the parameters. In both cases the results show that the esti-
mated values are close to the true ones.

Conclusions & Future Work
A novel variational Gaussian approximation algorithm was
presented, which allows estimation of the system forcing
and noise parameters, using gradient techniques. The ini-
tial results are promising. However, many things need to be
done to make the algorithm more robust and efficient (e.g.
better optimisation method, suboptimal approximations of
the variational parameters, variational Bayes estimation of
parameters). Also a more broad range of higher dimen-
sional dynamical systems needs to be considered.
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