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Data assimilation

The goal of data assimilation is to estimate the (filtering or smoothing) posterior
distribution of the system states given the available measurements (observations).

A Bayesian setup of the inference problem:

Prior measure defined by a Stochastic Differential Equation (Itō), [8]:

dxt = f(xt)θ dt + Σ1/2 dwt , dwt ∼ N (0, dtI) . (1)

Observation model (likelihood) is corrupted by i.i.d. Gaussian white noise:

yk = hk(xtk ) + εk , εk ∼ N (0,Rk) . (2)

Posterior measure is computed over paths (note the infinite dimensionality):

ppost({xt}t∈T |y1:K ) =
1

Z
×

(
K∏

k=1

p(yk |xtk )

)
× p({xt}t∈T ) . (3)
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A (new) variational approach to the estimation problem

The VGPA algorithm approximates the true posterior process by another that belongs to
a family of tractable ones.

Gaussian process approximation (implies a linear SDE), [2]:

dxt = gL(xt) dt + Σ1/2 dwt , with gL(xt) = −Atxt + bt , (4)

with At ∈ <D×D and bt ∈ <D define the time varying linear drift in the approximating
process.

The goodness of fit is measured with the Kullback-Liebler divergence (i.e.
KL[q(x)‖p(x |y)]).

Variational free energy as an upper bound, [3, 4]:

F(q(x|Σ),θ,Σ) = −
〈

ln
p(x, y1:K |θ,Σ)

q(x|Σ)

〉
q(x|Σ)

≥ − ln p(y1:K |θ,Σ) (5)

This is a ’by-product’ of the variational framework and it comes for free!
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VGPA - Core Equations

The Gaussian marginal at time ’t’ is defined as follows:

q(xt) = N (xt ;mt ,St) , t ∈ T , (6)

where mt ∈ <D and St ∈ <D×D , are respectively the marginal mean and covariance at
time ’t’, given by:

Marginal moments (forward ODEs):

dmt

dt
= −Atmt + bt , (7)

dSt

dt
= −AtSt − StAt

> + Σ . (8)

Solved numerically with explicit integration methods (e.g. Euler, Runge-Kutta).

These ODEs define the time evolution of the approximate process and act as

constraints in the optimization process.
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VGPA - Core Equations

With a bit more effort Eq.(5) derives to:

Cost functional, [3, 4]:

F(q(x),θ,Σ) = KL[q0‖p0] +
1

2

∫ tf

t0

〈
(f(xt)− gL(xt))>Σ−1(f(xt)− gL(xt))

〉
qt
dt

+
1

2

∑
k

〈
(yk − xtk )>R−1(yk − xtk )

〉
qt

+ const(R). (9)

And with the addition of the constraints we get:

Constraint optimization (what we actually minimize!!):

L = F(q(x|Σ),θ,Σ)−
∫ tf

t0

λ>t (ṁt + Atmt − bt)︸ ︷︷ ︸
ODE for the means

+tr{Ψt (Ṡt + AtSt + StAt
> −Σ)︸ ︷︷ ︸

ODE for the covariances

} dt

(10)

Therefore we have transformed an inference problem to an optimization problem.
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VGPA - how to estimate model parameters

When we estimate model parameters we target at the following distribution p(θ|y). The
variational free energy provides an upper bound on the marginal likelihood, p(y |θ), and
we propose two options for parameter estimation [3, 5].

1 - Discrete approximations to the posterior distributions:

select a set of points Dθ = {θi}nθi=1, to approximate the distribution

run VGPA to convergence; this yields to a corresponding set of free energy
values DF = {F(q(x|Σ),θi ,Σ)}nθi=1

evaluate exp{−F(q(x|Σ),θi ,Σ)} and use this value as a proxy of the true
marginal likelihood p(y1:K |θ,Σ) (see Eq. 10)

the approximate posterior distribution (including a prior π(θi )) is given:

p(θ|y1:K ) ∝
{

exp{−F(q(x|Σ),θi ,Σ)} × π(θi )

}nθ

i=1

(11)
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VGPA - DW example

Double Well stochastic differential equation, D = 1:

dxt = 4xt(θ − x2
t ) dt + σdwt , with θ , σ > 0 , (12)

driven by a double-well potential function U(xt) = −2x2
t + x4

t .
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(a) Drift (θ) approximation, [5]
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(b) Noise (σ2) approximation, [5]
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VGPA - how to estimate model parameters (continue).

2 - Maximum likelihood type-II (gradient based):

compute the gradients of the cost function Eq.(10) w.r.t. the parameters of
interest, example:

(a) ∇θL =
∫ tf
t0

〈
(f(xt)− gL(xt))>Σ−1∇θf(xt)

〉
qt
dt

(b) ∇ΣL = −
∫ tf
t0

(
1
2Σ
−1
〈
(f(xt)− gL(xt))(f(xt)− gL(xt))>

〉
qt
Σ−1 −Ψt

)
dt

the procedure works in an inner/outer gradient optimization loop

the parameters can be estimated either jointly or marginally

Other parameters of interest might be:

initial posterior moments (m0 and S0)

observation noise covariance R
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Mean field approximation (higher dimensions)

The variational framework [6], allows many approximations. To make VGPA applicable
in higher dimensions we further adopt two more approaches.

1) Factorization of the posterior:

Assuming At is diagonal Eq.(7 & 8) can be solved for At and bt , allowing the linear drift
to be re-written as: gL(xt) = ṁt − 1

2
(Σ− Ṡt)S

−1
t (xt −mt). This factorizes the posterior

and allows for independent (and parallel) treatment for each dimension.

2) Polynomial approximation:

Parameterizing mt and St with low order polynomials (between observations), allows for
an analytic expression for the cost function Eq.(9), therefore no discretization errors!

The Lagrange polynomial formula for m(t) and s(t) is chosen as it provides additional
advantages:

mj
i (t) =

3∑
k=0

mj
i (tj + kh)

 ∏
0≤l≤3
l 6=k

t − (tj + lh)

tj − (tj + lh)


 (13)

A similar expression is derived for the marginal variance s ji (t).
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Application in Hydrology

Richards’ PDE describes the movement of liguids in unsaturated porous
media [7].

Pressure head ψ(z , t)-based formulation

C (ψ)
∂ψ

∂t
=

∂

∂z

[
K (ψ)

(
∂ψ

∂z
− 1

)]
+ S(z , t) (14)

Assuming a fixed uniform spatial grid ∆z = zi+1 − zi and using a simple
explicit discretization scheme we get a set of coupled ODEs:

Ci
∆ψi

∆t
=

1

∆z

[
Kn
i+1/2

(
ψn
i+1 − ψn

i

∆z
− 1

)
− Kn

i−1/2

(
ψn
i − ψn

i−1

∆z
− 1

)]
+Sn

i ,

(15)
where ψi ≡ ψ(zi , t), with i = 1 . . . L, representing the spatial index and n
is the time index.
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Complexity & Limitations

1 Complexity

computing the expectations and the integrals can be challenging, but
once this is done no further tunning is required (unlike EnKF)
no need for computing an adjoint model (unlike 4DVar)
mean field approximation allows fully parallelizable cost function (fast)
polynomial approximation elliminates time discretization (memory
efficient)

2 Limitations

GP approximation suffers when posterior is strongly non-Gaussian (but
the same is true for other DA methods such as EnKF or 4DVar)
absence of lower bound means there are no quarantees on the
approximation error
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